ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability Analysis of a Simplified Yet Complete Model for Chronic Myelegenous Leukemia

245   0   0.0 ( 0 )
 نشر من قبل Marie Doumic Jauffret
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the asymptotic behavior of a partial differential equation (PDE) model for hematopoiesis. This PDE model is derived from the original agent-based model formulated by (Roeder et al., Nat. Med., 2006), and it describes the progression of blood cell development from the stem cell to the terminally differentiated state. To conduct our analysis, we start with the PDE model of (Kim et al, JTB, 2007), which coincides very well with the simulation results obtained by Roeder et al. We simplify the PDE model to make it amenable to analysis and justify our approximations using numerical simulations. An analysis of the simplified PDE model proves to exhibit very similar properties to those of the original agent-based model, even if for slightly different parameters. Hence, the simplified model is of value in understanding the dynamics of hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of having fewer parameters, which makes comparison with both experimental data and alternative models much easier.



قيم البحث

اقرأ أيضاً

247 - Mostafa Adimy 2009
This paper is devoted to the analysis of a mathematical model of blood cells production in the bone marrow (hematopoiesis). The model is a system of two age-structured partial differential equations. Integrating these equations over the age, we obtai n a system of two nonlinear differential equations with distributed time delay corresponding to the cell cycle duration. This system describes the evolution of the total cell populations. By constructing a Lyapunov functional, it is shown that the trivial equilibrium is globally asymptotically stable if it is the only equilibrium. It is also shown that the nontrivial equilibrium, the most biologically meaningful one, can become unstable via a Hopf bifurcation. Numerical simulations are carried out to illustrate the analytical results. The study maybe helpful in understanding the connection between the relatively short cell cycle durations and the relatively long periods of peripheral cell oscillations in some periodic hematological diseases.
Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution eq uations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowksi coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our Github repository (github.com/MathBioCU).
We study the mathematical properties of a general model of cell division structured with several internal variables. We begin with a simpler and specific model with two variables, we solve the eigenvalue problem with strong or weak assumptions, and d educe from it the long-time convergence. The main difficulty comes from natural degeneracy of birth terms that we overcome with a regularization technique. We then extend the results to the case with several parameters and recall the link between this simplified model and the one presented in cite{CBBP1}; an application to the non-linear problem is also given, leading to robust subpolynomial growth of the total population.
The Surface Cauchy-Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D mo del we show that the error committed by the SCB method is O(1) in the mesh size; however, we are able to identify an alternative approximation parameter - the stiffness of the interaction potential - with respect to which the error in the mean strain is exponentially small. Our analysis naturally suggests an improvement of the SCB model by enforcing atomistic mesh spacing in the normal direction at the free boundary.
We show that in bounded domains with no-slip boundary conditions, the Navier-Stokes pressure can be determined in a such way that it is strictly dominated by viscosity. As a consequence, in a general domain we can treat the Navier-Stokes equations as a perturbed vector diffusion equation, instead of as a perturbed Stokes system. To illustrate the advantages of this view, we provide a simple proof of the unconditional stability of a difference scheme that is implicit only in viscosity and explicit in both pressure and convection terms, requiring no solution of stationary Stokes systems or inf-sup conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا