ترغب بنشر مسار تعليمي؟ اضغط هنا

Handle number one links and generalized property R

154   0   0.0 ( 0 )
 نشر من قبل Michael Williams
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that if the exterior of a link L in the three sphere admits a genus 2 Heegaard splitting, then L has Generalized Property R.



قيم البحث

اقرأ أيضاً

187 - Marc Lackenby 2018
We provide an algorithm to determine whether a link L admits a crossing change that turns it into a split link, under some fairly mild hypotheses on L. The algorithm also provides a complete list of all such crossing changes. It can therefore also determine whether the unlinking number of L is 1.
Let $n$ be a positive integer. The aim of this paper is to study two local moves $V(n)$ and $V^{n}$ on welded links, which are generalizations of the crossing virtualization. We show that the $V(n)$-move is an unknotting operation on welded knots for any $n$, and give a classification of welded links up to $V(n)$-moves. On the other hand, we give a necessary condition for which two welded links are equivalent up to $V^{n}$-moves. This leads to show that the $V^{n}$-move is not an unknotting operation on welded knots except for $n=1$. We also discuss relations among $V^{n}$-moves, associated core groups and the multiplexing of crossings.
We present explicit geometric decompositions of the complement of tiling links, which are alternating links whose projection graphs are uniform tilings of the 2-sphere, the Euclidean plane or the hyperbolic plane. This requires generalizing the angle structures program of Casson and Rivin for triangulations with a mixture of finite, ideal, and truncated (i.e. ultra-ideal) vertices. A consequence of this decomposition is that the volumes of spherical tiling links are precisely twice the maximal volumes of the ideal Archimedean solids of the same combinatorial description. In the case of hyperbolic tiling links, we are led to consider links embedded in thickened surfaces S_g x I with genus g at least 2. We generalize the bipyramid construction of Adams to truncated bipyramids and use them to prove that the set of possible volume densities for links in S_g x I, ranging over all g at least 2, is a dense subset of the interval [0, 2v_{oct}], where v_{oct}, approximately 3.66386, is the volume of the regular ideal octahedron.
We give asymptotically sharp upper bounds for the Khovanov width and the dealternation number of positive braid links, in terms of their crossing number. The same braid-theoretic technique, combined with Ozsvath, Stipsicz, and Szabos Upsilon invarian t, allows us to determine the exact cobordism distance between torus knots with braid index two and six.
In the 1980s Daryl Cooper introduced the notion of a C-complex (or clasp-complex) bounded by a link and explained how to compute signatures and polynomial invariants using a C-complex. Since then this was extended by works of Cimasoni, Florens, Mello r, Melvin, Conway, Toffoli, Friedl, and others to compute other link invariants. Informally a C-complex is a union of surfaces which are allowed to intersect each other in clasps. The purpose of the current paper is to study the minimal number of clasps amongst all C-complexes bounded by a fixed link $L$. This measure of complexity is related to the number of crossing changes needed to reduce $L$ to a boundary link. We prove that if $L$ is a 2-component link with nonzero linking number, then the linking number determines the minimal number of clasps amongst all C-complexes. In the case of 3-component links, the triple linking number provides an additional lower bound on the number of clasps in a C-complex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا