ترغب بنشر مسار تعليمي؟ اضغط هنا

The Foggy Disks Surrounding Herbig Ae Stars: a Theoretical Study of the H2O Line Spectra

104   0   0.0 ( 0 )
 نشر من قبل Asuncion Fuente
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Water is a key species in many astrophysical environments, but it is particularly important in proto-planetary disks. So far,observations of water in these objects have been scarce, but the situation should soon change thanks to the Herschel satellite. We report here a theoretical study of the water line spectrum of a proto-planetary disk surrounding Ae stars. We show that several lines will be observable with the HIFI instrument onboard the Herschel Space Observatory. We predict that some maser lines could also be observable with ground telescopes and we discuss how the predictions depend not only on the adopted physical and chemical model but also on the set of collisional coefficients used and on the H2 ortho to para ratio through its effect on collisional excitation. This makes the water lines observations a powerful, but dangerous -if misused- diagnostic tool.



قيم البحث

اقرأ أيضاً

Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential und erlying causes we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks, using a model that pays special attention to photochemistry. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices, which are expected to be more abundant in Herbig Ae disks. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
147 - Jorick S. Vink 2015
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which sugges ts that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
We seek to find the precursors of the Herbig Ae/Be stars in the solar vicinity within 500 pc from the Sun. We do this by creating an optically selected sample of intermediate mass T-Tauri stars (IMTT stars) here defined as stars of masses $1.5 M_{odo t}leq M_* leq 5 M_{odot}$ and spectral type between F and K3, from literature. We use literature optical photometry (0.4-1.25$mu$m) and distances determined from Gaia DR2 parallax measurements together with Kurucz stellar model spectra to place the stars in a HR-diagram. With Siess evolutionary tracks we identify intermediate mass T-Tauri stars from literature and derive masses and ages. We use Spitzer spectra to classify the disks around the stars into Meeus Group I and Group II disks based on their [F$_{30}$/F$_{13.5}$] spectral index. We also examine the 10$mu$m silicate dust grain emission and identify emission from Polycyclic Aromatic Hydrocarbons (PAH). From this we build a qualitative picture of the disks around the intermediate mass T-Tauri stars and compare this with available spatially resolved images at infrared and at sub-millimeter wavelengths to confirm our classification. We find 49 intermediate mass T-Tauri stars with infrared excess. The identified disks are similar to the older Herbig Ae/Be stars in disk geometries and silicate dust grain population. Spatially resolved images at infra-red and sub-mm wavelengths suggest gaps and spirals are also present around the younger precursors to the Herbig Ae/Be stars. Comparing the timescale of stellar evolution towards the main sequence and current models of protoplanetary disk evolution the similarity between Herbig Ae/Be stars and the intermediate mass T-Tauri stars points towards an evolution of Group I and Group II disks that are disconnected, and that they represent two different evolutionary paths.
We use the IRAM 30-m telescope to perform a sensitive search for CN N=2-1 in 42 T Tauri or Herbig Ae systems located mostly in the Taurus-Auriga region. $^{13}$CO J=2-1 is observed simultaneously to indicate the level of confusion with the surroundin g molecular cloud. The bandpass also contains two transitions of ortho-H$_2$CO, one of SO and the C$^{17}$O J=2-1 line which provide complementary information on the nature of the emission. While $^{13}$CO is in general dominated by residual emission from the cloud, CN exhibits a high disk detection rate $> 50$% in our sample. We even report CN detection in stars for which interferometric searches failed to detect $^{12}$CO, presumably because of obscuration by a foreground, optically thick, cloud. Comparison between CN and o-H$_2$CO or SO line profiles and intensities divide the sample in two main categories. Sources with SO emission are bright and have strong H$_2$CO emission, leading in general to [H$_2$CO/CN]$ > 0.5$. Furthermore, their line profiles, combined with a priori information on the objects, suggest that the emission is coming from outflows or envelopes rather than from a circumstellar disk. On the other hand, most sources have [H$_2$CO/CN]$ < 0.3$, no SO emission, and some of them exhibit clear double-peaked profiles characteristics of rotating disks. In this second category, CN is likely tracing the proto-planetary disks. From the line flux and opacity derived from the hyperfine ratios, we constrain the outer radii of the disks, which range from 300 to 600 AU. The overall gas disk detection rate (including all molecular tracers) is $sim 68%$, and decreases for fainter continuum sources. This study shows that gas disks, like dust disks, are ubiquitous around young PMS stars in regions of isolated star formation, and that a large fraction of them have $R > 300$ AU.
Using the HiVIS spectropolarimeter built for the Haleakala 3.7m AEOS telescope, we have obtained a large number of high precision spectropolarimetrc observations (284) of Herbig AeBe stars collected over 53 nights totaling more than 300 hours of obse rving. Our sample of five HAeBe stars: AB Aurigae, MWC480, MWC120, MWC158 and HD58647, all show systematic variations in the linear polarization amplitude and direction as a function of time and wavelength near the H-alpha line. In all our stars, the H-alpha line profiles show evidence of an intervening disk or outflowing wind, evidenced by strong emission with an absorptive component. The linear polarization varies by 0.2% to 1.5% with the change typically centered in the absorptive part of the line profile. These observations are inconsistent with a simple disk-scattering model or a depolarization model which produce polarization changes centered on the emmissive core. We speculate that polarized absorption via optical pumping of the intervening gas may be the cause.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا