ﻻ يوجد ملخص باللغة العربية
We analyze the physical conditions in the low-ionization component of starburst outflows (in contrast to the high-ionization wind fluid observed in X-rays), based on new Keck/LRIS spectroscopy of partially resolved absorption troughs in near-ultraviolet and optical spectra of Ultraluminous Infrared Galaxies. The large velocity width and blueshift present in seven, atomic transitions indicate a macroscopic velocity gradient within the outflowing gas. The mgII 2796, 2803 (and feII 2587, 2600) doublet lines in these data constrains the gas kinematics better than the heavily blended ad 5892, 98 doublet. The identical shape of the mgII 2796 absorption troughs to that of the normally weaker transition at 2803AA requires both transitions be optically thick at all outflow velocities. The fraction of the galactic continuum covered by the outflow at each velocity therefore dictates the shape of these absorption troughs. We suggest that the velocity offset of the deepest part of the troughs, where the covering factor of low-ionization gas is near unity, reflects the speed of a shell of swept-up, interstellar gas at the time of blowout. In a spherical outflow, we show that the fragments of this shell expand slowly relative to the geometrical dilution; and the covering fraction of low-ionization gas decreases with increasing radius. Our measurement of a covering factor that decreases with increasing velocity can therefore be interpreted as evidence that the low-ionization outflow is accelerating. We also present measurements of C_f(v) in 4 species, place an upper limit of 3000 cm3 on the density of the outflowing gas, and discuss lower limits on the mass outflow rate.
We present results of our time variability studies of Mg II and Al III absorption lines in a sample of 22 Low Ionization Broad Absorption Line QSOs (LoBAL QSOs) at 0.2 <= zem <= 2.1 using the 2m telescope at IUCAA Girawali Observatory over a time-sca
We study the kinematically narrow, low-ionization line emission from a bright, starburst galaxy at z = 0.69 using slit spectroscopy obtained with Keck/LRIS. The spectrum reveals strong absorption in MgII and FeII resonance transitions with Doppler sh
This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attache
We report the discovery in the Sloan Digital Sky Survey and the SDSS-III Baryon Oscillation Spectroscopic Survey of seventeen broad absorption line (BAL) quasars with high-ionization troughs that include absorption redshifted relative to the quasar r
We present new Gemini spectroscopical data of the Extended Emission-Line Region of 3C~305 radio galaxy in order to achieve the final answer of the long-standing question about the ionizing mechanism. The spectra show strong kinematic disturbances wit