ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay of negative muons bound in $^{27}$Al

83   0   0.0 ( 0 )
 نشر من قبل Alexander Grossheim
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first measurement of the energy spectrum up to 70 MeV of electrons from the decay of negative muons after they become bound in $^{27}$Al atoms. The data were taken with the TWIST apparatus at TRIUMF. We find a muon lifetime of (864.6 $pm$ 1.2) ns, in agreement with earlier measurements. The asymmetry of the decay spectrum is consistent with zero, indicating that the atomic capture has completely depolarised the muons. The measured momentum spectrum is in reasonable agreement with theoretical predictions at the higher energies, but differences around the peak of the spectrum indicate the need for oalpha radiative corrections to the calculations. The present measurement is the most precise measurement of the decay spectrum of muons bound to any nucleus.

قيم البحث

اقرأ أيضاً

200 - H. Heylen 2020
Hyperfine spectra of $^text{27-32}$Al ($Z=13$) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the $3s^23p ^2text{P}^text{o} _{3/2}rightarrow 3s^24s ^2text{S}_{1/2}$ atomic transition. For the first time, mean-sq uare charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of $^{29}$Al and electric quadrupole moments of $^{29,30}$Al. A potentially reduced charge radius at $N=19$ may suggest an effect of the $N=20$ shell closure, which is visible in the Al chain, contrary to other isotopic chains in the $sd$ shell. The experimental results are compared to theoretical calculations in the framework of the valence-space in-medium similarity renormalization group using multiple sets of two and three-nucleon forces from chiral effective field theory. While the trend of experimental magnetic dipole and electric quadrupole moments is well reproduced, the absolute values are underestimated by theory, consistent with earlier studies. Moreover, both the scale and trend of the charge radii appear to be very sensitive to the chosen interaction.
98 - L. J. Sun , X. X. Xu , S. Q. Hou 2018
Background: Beta-decay spectroscopy provides valuable nuclear physics input for thermonuclear reaction rates of astrophysical interest and stringent test for shell-model theories far from the stability line. Purpose: The available decay properties of proton drip-line nucleus $^{27}$S is insufficient to constrain the properties of the key resonance in $^{26}$Si$(p,gamma)^{27}$P reaction rate and probe the possible isospin asymmetry. The decay scheme of $^{27}$S is complicated and far from being understood, which has motivated but also presented challenges for our experiment. Method: The $^{27}$S ions were implanted into a double-sided silicon strip detector array surrounded by the high-purity germanium detectors, where the $beta$-delayed protons and $gamma$ rays were measured simultaneously. Results: The improved spectroscopic properties including the precise half-life of $^{27}$S, the excitation energies, $beta$-decay branching ratios, log~$ft$ values, and $B$(GT) values for the states of $^{27}$P populated in the $beta$ decay of $^{27}$S were measured and compared to the $^{27}$Mg mirror states and the shell-model calculations. The present work has expanded greatly on the previously established decay scheme of $^{27}$S. Conclusions: The precise proton-separation energy of $^{27}$P, the energy and the ratio between $gamma$ and proton partial widths of the $3/2^+$ resonance were obtained, thereby determining the $^{26}$Si$(p,gamma)^{27}$P reaction rate based mainly on experimental constraints. The first evidence for the observation of a large isospin asymmetry for the mirror decays of $^{27}$S and $^{27}$Na is also provided. The experimental spectroscopic information can be reproduced by the shell-model calculation taking the weakly bound effect of the proton $1s_{1/2}$ orbit into account.
We studied the radiative muon decay $mu^+ to e^+ ubar{ u}gamma$ by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B($mu^+ to e^+ ubar{ u}gamma$) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{gamma} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for $mu^+ to e^+gamma$ process.
A large $mu^-$ polarization was achieved in muonic Bi atoms with the help of the strong hyperfine field in a polarized nuclear target. Using $^{209}$Bi nuclei polarized to ($59pm9$)% in ferromagnetic BiMn, we observed a $mu$-$e$ decay asymmetry of ($ 13.1pm3.9$)%, which gives $mu^-$ polarization per nuclear polarization equal to $-1.07pm 0.35$. This value is almost consistent with $-0.792$ calculated for nuclei with spin $I= frac{9}{2}$ and a positive magnetic moment under the assumption that the hyperfine interaction becomes effective in the lowest muonic states.
The reaction mechanism of deep-inelastic multinucleon transfer processes in the $^{16}$O+$^{27}$Al reaction at an incident $^{16}$O energy ($E_{rm lab}=134$ MeV) substantially above the Coulomb barrier has been studied both experimentally and theoret ically. Elastic-scattering angular distribution, total kinetic energy loss spectra and angular distributions for various transfer channels have been measured. The $Q$-value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay between fusion-fission, deep-inelastic, multinucleon transfer and particle evaporation processes are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا