ترغب بنشر مسار تعليمي؟ اضغط هنا

Microgravity experiments on the collisional behavior of Saturnian ring particles

187   0   0.0 ( 0 )
 نشر من قبل Daniel Hei{\\ss}elmann
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present results of two novel experimental methods to investigate the collisional behavior of individual macroscopic icy bodies. The experiments reported here were conducted in the microgravity environments of parabolic flights and the Bremen drop tower facility. Using a cryogenic parabolic-flight setup, we were able to capture 41 near-central collisions of 1.5-cm-sized ice spheres at relative velocities between 6 and $22 mathrm{cm s^{-1}}$. The analysis of the image sequences provides a uniform distribution of coefficients of restitution with a mean value of $overline{varepsilon} = 0.45$ and values ranging from $varepsilon = 0.06$ to 0.84. Additionally, we designed a prototype drop tower experiment for collisions within an ensemble of up to one hundred cm-sized projectiles and performed the first experiments with solid glass beads. We were able to statistically analyze the development of the kinetic energy of the entire system, which can be well explained by assuming a granular `fluid following Haffs law with a constant coefficient of restitution of $varepsilon = 0.64$. We could also show that the setup is suitable for studying collisions at velocities of $< 5 mathrm{mm s^{-1}}$ appropriate for collisions between particles in Saturns dense main rings.

قيم البحث

اقرأ أيضاً

Context: Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present i n cold protostellar regions alongside the dominant water ice; they are also likely to be incorporated into planets which form in protoplanetary disks, and planetary ring systems. However, the effect of the chemical composition of the ice on its collisional properties has not yet been studied. Aims: Collisions of 1.5 cm ice spheres composed of pure crystalline water ice, water with 5% methanol, and water with 5% formic acid were investigated to determine the effect of the ice composition on the collisional outcomes. Methods: The collisions were conducted in a dedicated experimental instrument, operated under microgravity conditions, at relative particle impact velocities between 0.01 and 0.19 m s^-1, temperatures between 131 and 160 K and a pressure of around 10^-5 mbar. Results: A range of coefficients of restitution were found, with no correlation between this and the chemical composition, relative impact velocity, or temperature. Conclusions: We conclude that the chemical composition of the ice (at the level of 95% water ice and 5% methanol or formic acid) does not affect the collisional properties at these temperatures and pressures due to the inability of surface wetting to take place. At a level of 5% methanol or formic acid, the structure is likely to be dominated by crystalline water ice, leading to no change in collisional properties. The surface roughness of the particles is the dominant factor in explaining the range of coefficients of restitution.
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet-formation, which therefore is subject to many laboratory studies. However, the pressure-temperature gradients in proto-pl anetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in pro- toplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above $approx$ 210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from $approx$ 10 to $approx$ 30 {AA} ($approx$ 2.5 to 12 bilayers) proves increased molecular mobility at temperatures above $approx$ 210 K. As none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure-temperature environment, may have a larger influence on collision outcomes than previously thought.
Planetisimals are thought to be formed from the solid material of a protoplanetary disk by a process of dust aggregation. It is not known how growth proceeds to kilometre sizes, but it has been proposed that water ice beyond the snowline might affect this process. To better understand collisional processes in protoplanetary disks leading to planet formation, the individual low velocity collisions of small ice particles were investigated. The particles were collided under microgravity conditions on a parabolic flight campaign using a purpose-built, cryogenically cooled experimental setup. The setup was capable of colliding pairs of small ice particles (between 4.7 and 10.8 mm in diameter) together at relative collision velocities of between 0.27 and 0.51 m s ^-1 at temperatures between 131 and 160 K. Two types of ice particle were used: ice spheres and irregularly shaped ice fragments. Bouncing was observed in the majority of cases with a few cases of fragmentation. A full range of normalised impact parameters (b/R = 0.0-1.0) was realised with this apparatus. Coefficients of restitution were evenly spread between 0.08 and 0.65 with an average value of 0.36, leading to a minimum of 58% of translational energy being lost in the collision. The range of coefficients of restitution is attributed to the surface roughness of the particles used in the study. Analysis of particle rotation shows that up to 17% of the energy of the particles before the collision was converted into rotational energy. Temperature did not affect the coefficients of restitution over the range studied.
We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning February 2004 to August 2013, Cooper et al. (2015) found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54 :53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model (El Moutamid et al. 2014), showing that the chaotic zone fills almost all the corotation sites occupied by the satellites orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturns oblateness only captures the essential features of the dynamics.
The observations of the surfaces of the mid sized Saturnian satellites made by Cassini Huygens mission have shown a variety of features that allows study of the processes that took place and are taking place on those worlds. Research of the Saturnian satellite surfaces has clear implications for Saturn history and surroundings. In a recent paper, the production of craters on the mid sized Saturnian satellites by Centaur objects was calculated considering the current Solar System. We have compared our results with crater counts from Cassini images and we have noted that the number of observed small craters is less than our calculated number. In this paper we estimate the age of the surface for each observed terrain on each mid sized satellite of Saturn. We have noticed that since there are less observed small craters than calculated (except on Iapetus), this results in younger ages. This could be the result of efficient endogenous or exogenous process(es) for erasing small craters and or crater saturation at those sizes. The size limit from which the observed number of smaller craters is less than the calculated is different for each satellite, possibly indicating processes that are unique to each, but other potential common explanations would be crater saturation and or deposition of E ring particles. These processes are also suggested by the findings that the smaller craters are being preferentially removed, and the erasure process is gradual. On Enceladus, only mid and high latitude plains have remnants of old terrains; the other regions could be young; the regions near the South Polar Terrain could be as young as 50 Myr old. On the contrary for Iapetus, all the surface is old and it notably registers a primordial source of craters. As the crater size is decreased, it would be perceived to approach saturation until D less than 2 km craters, where saturation is complete.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا