ﻻ يوجد ملخص باللغة العربية
In this paper we present results of two novel experimental methods to investigate the collisional behavior of individual macroscopic icy bodies. The experiments reported here were conducted in the microgravity environments of parabolic flights and the Bremen drop tower facility. Using a cryogenic parabolic-flight setup, we were able to capture 41 near-central collisions of 1.5-cm-sized ice spheres at relative velocities between 6 and $22 mathrm{cm s^{-1}}$. The analysis of the image sequences provides a uniform distribution of coefficients of restitution with a mean value of $overline{varepsilon} = 0.45$ and values ranging from $varepsilon = 0.06$ to 0.84. Additionally, we designed a prototype drop tower experiment for collisions within an ensemble of up to one hundred cm-sized projectiles and performed the first experiments with solid glass beads. We were able to statistically analyze the development of the kinetic energy of the entire system, which can be well explained by assuming a granular `fluid following Haffs law with a constant coefficient of restitution of $varepsilon = 0.64$. We could also show that the setup is suitable for studying collisions at velocities of $< 5 mathrm{mm s^{-1}}$ appropriate for collisions between particles in Saturns dense main rings.
Context: Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present i
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet-formation, which therefore is subject to many laboratory studies. However, the pressure-temperature gradients in proto-pl
Planetisimals are thought to be formed from the solid material of a protoplanetary disk by a process of dust aggregation. It is not known how growth proceeds to kilometre sizes, but it has been proposed that water ice beyond the snowline might affect
We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning February 2004 to August 2013, Cooper et al. (2015) found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54
The observations of the surfaces of the mid sized Saturnian satellites made by Cassini Huygens mission have shown a variety of features that allows study of the processes that took place and are taking place on those worlds. Research of the Saturnian