ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Nodal superconductivity in Sr$_{2}$ScFePO$_{3}$

243   0   0.0 ( 0 )
 نشر من قبل Karen Yates
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Point contact Andreev reflection spectra have been taken as a function of temperature and magnetic field on the polycrystalline form of the newly discovered iron-based superconductor Sr2ScFePO3. A zero bias conductance peak which disappears at the superconducting transition temperature, dominates all of the spectra. Data taken in high magnetic fields show that this feature survives until 7T at 2K and a flattening of the feature is observed in some contacts. Here we inspect whether these observations can be interpreted within a d-wave, or nodal order parameter framework which would be consistent with the recent theoretical model where the height of the P in the Fe-P-Fe plane is key to the symmetry of the superconductivity. However, in polycrystalline samples care must be taken when examining Andreev spectra to eliminate or take into account artefacts associated with the possible effects of Josephson junctions and random alignment of grains.



قيم البحث

اقرأ أيضاً

Spontaneous rotational-symmetry breaking in the superconducting state of doped $mathrm{Bi}_2mathrm{Se}_3$ has attracted significant attention as an indicator for topological superconductivity. In this paper, high-resolution calorimetry of the single- crystal $mathrm{Sr}_{0.1}mathrm{Bi}_2mathrm{Se}_3$ provides unequivocal evidence of a two-fold rotational symmetry in the superconducting gap by a emph{bulk thermodynamic} probe, a fingerprint of nematic superconductivity. The extremely small specific heat anomaly resolved with our high-sensitivity technique is consistent with the materials low carrier concentration proving bulk superconductivity. The large basal-plane anisotropy of $H_{c2}$ is attributed to a nematic phase of a two-component topological gap structure $vec{eta} = (eta_{1}, eta_{2})$ and caused by a symmetry-breaking energy term $delta (|eta_{1}|^{2} - |eta_{2}|^{2}) T_{c}$. A quantitative analysis of our data excludes more conventional sources of this two-fold anisotropy and provides the first estimate for the symmetry-breaking strength $delta approx 0.1$, a value that points to an onset transition of the second order parameter component below 2K.
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently, other proposed $p$-wave scenarios are still viable. Here, field-dependent $^{17}$O Knight shift measurements are compared to corresponding specific heat measurements, previously reported. We conclude that the shift results can be accounted for by the expected field-induced quasiparticle response only. An upper bound for the condensate magnetic response of $<10%$ of the normal state susceptibility is sufficient to exclude odd-parity candidates.
We have discovered that samples of a new material produced by special processing of crystals of Sr2RuO4 (which is known to be a triplet superconductor with Tc values ~1.0-1.5K) exhibit signatures of superconductivity (zero DC resistance and expulsion of magnetic flux) at temperatures exceeding 200K. The special processing includes deposition of a silver coating and laser micromachining; Ag doping and enhanced oxygen are observed in the resultant surface layer. The transition, whether measured resistively or by magnetic field expulsion, is broad. When the transition is registered by resistive methods, the critical temperature is markedly reduced when the measuring current is increased. The resistance disappears by about 190K. The highest value of Tc registered by magneto-optical visualization is about 220K and even higher values (up to 250K) are indicated from the SQUID-magnetometer measurements.
141 - H. D. Yang , J.-Y. Lin , C. P. Sun 2004
Comprehensive low-temperature specific heat data C(T,H) of Na_0.35CoO2-1.3H_2O with temperature T down to 0.6 K and the magnetic field H up to 8 T are presented. For the normal state, the values of gamma_n=13.94 mJ/mol K2, and Debye temperature 362 K are reported. At zero field, a very sharp superconducting anomaly was observed at Tc=4.5 K with DeltaC/gamma_nTc=1.45. The superconducting volume fraction is estimated to be 47.4 % based on the consideration of entropy balance at Tc for the second-order superconducting phase transition. In the superconducting state, the electronic contribution C_es at H=0 can be well described by the model of the line nodal order parameter. In low H, gamma(H) H^1/2 which is also a manifestation of the line nodes. The behaviors of both Tc(H) and gamma(H) suggest the anisotropy of Hc2 or possible crossovers or transitions occurring in the mixed state.
We report an investigation of the London penetration depth $Deltalambda(T)$ on single crystals of the layered superconductor Ta$_4$Pd$_3$Te$_{16}$, where the crystal structure has quasi-one-dimensional characteristics. A linear temperature dependence of $Deltalambda(T)$ is observed for $Tll T_c$, in contrast to the exponential decay of fully gapped superconductors. This indicates the existence of line nodes in the superconducting energy gap. A detailed analysis shows that the normalized superfluid density $rho_s(T)$, which is converted from $Deltalambda(T)$, can be well described by a multigap scenario, with nodes in one of the superconducting gaps, providing clear evidence for nodal superconductivity in Ta$_4$Pd$_3$Te$_{16}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا