ترغب بنشر مسار تعليمي؟ اضغط هنا

An estimating equations approach to fitting latent exposure models with longitudinal health outcomes

181   0   0.0 ( 0 )
 نشر من قبل Brisa N. S\\'anchez
 تاريخ النشر 2009
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The analysis of data arising from environmental health studies which collect a large number of measures of exposure can benefit from using latent variable models to summarize exposure information. However, difficulties with estimation of model parameters may arise since existing fitting procedures for linear latent variable models require correctly specified residual variance structures for unbiased estimation of regression parameters quantifying the association between (latent) exposure and health outcomes. We propose an estimating equations approach for latent exposure models with longitudinal health outcomes which is robust to misspecification of the outcome variance. We show that compared to maximum likelihood, the loss of efficiency of the proposed method is relatively small when the model is correctly specified. The proposed equations formalize the ad-hoc regression on factor scores procedure, and generalize regression calibration. We propose two weighting schemes for the equations, and compare their efficiency. We apply this method to a study of the effects of in-utero lead exposure on child development.



قيم البحث

اقرأ أيضاً

One of the most significant barriers to medication treatment is patients non-adherence to a prescribed medication regimen. The extent of the impact of poor adherence on resulting health measures is often unknown, and typical analyses ignore the time- varying nature of adherence. This paper develops a modeling framework for longitudinally recorded health measures modeled as a function of time-varying medication adherence or other time-varying covariates. Our framework, which relies on normal Bayesian dynamic linear models (DLMs), accounts for time-varying covariates such as adherence and non-dynamic covariates such as baseline health characteristics. Given the inefficiencies using standard inferential procedures for DLMs associated with infrequent and irregularly recorded response data, we develop an approach that relies on factoring the posterior density into a product of two terms; a marginal posterior density for the non-dynamic parameters, and a multivariate normal posterior density of the dynamic parameters conditional on the non-dynamic ones. This factorization leads to a two-stage process for inference in which the non-dynamic parameters can be inferred separately from the time-varying parameters. We demonstrate the application of this model to the time-varying effect of anti-hypertensive medication on blood pressure levels from a cohort of patients diagnosed with hypertension. Our model results are compared to ones in which adherence is incorporated through non-dynamic summaries.
Built environment features (BEFs) refer to aspects of the human constructed environment, which may in turn support or restrict health related behaviors and thus impact health. In this paper we are interested in understanding whether the spatial distr ibution and quantity of fast food restaurants (FFRs) influence the risk of obesity in schoolchildren. To achieve this goal, we propose a two-stage Bayesian hierarchical modeling framework. In the first stage, examining the position of FFRs relative to that of some reference locations - in our case, schools - we model the distances of FFRs from these reference locations as realizations of Inhomogenous Poisson processes (IPP). With the goal of identifying representative spatial patterns of exposure to FFRs, we model the intensity functions of the IPPs using a Bayesian non-parametric viewpoint and specifying a Nested Dirichlet Process prior. The second stage model relates exposure patterns to obesity, offering two different approaches to accommodate uncertainty in the exposure patterns estimated in the first stage: in the first approach the odds of obesity at the school level is regressed on cluster indicators, each representing a major pattern of exposure to FFRs. In the second, we employ Bayesian Kernel Machine regression to relate the odds of obesity to the multivariate vector reporting the degree of similarity of a given school to all other schools. Our analysis on the influence of patterns of FFR occurrence on obesity among Californian schoolchildren has indicated that, in 2010, among schools that are consistently assigned to a cluster, there is a lower odds of obesity amongst 9th graders who attend schools with most distant FFR occurrences in a 1-mile radius as compared to others.
This paper presents an approach to estimating the health effects of an environmental hazard. The approach is general in nature, but is applied here to the case of air pollution. It uses a computer model involving ambient pollution and temperature inp uts, to simulate the exposures experienced by individuals in an urban area, whilst incorporating the mechanisms that determine exposures. The output from the model comprises a set of daily exposures for a sample of individuals from the population of interest. These daily exposures are approximated by parametric distributions, so that the predictive exposure distribution of a randomly selected individual can be generated. These distributions are then incorporated into a hierarchical Bayesian framework (with inference using Markov Chain Monte Carlo simulation) in order to examine the relationship between short-term changes in exposures and health outcomes, whilst making allowance for long-term trends, seasonality, the effect of potential confounders and the possibility of ecological bias. The paper applies this approach to particulate pollution (PM$_{10}$) and respiratory mortality counts for seniors in greater London ($geq$65 years) during 1997. Within this substantive epidemiological study, the effects on health of ambient concentrations and (estimated) personal exposures are compared.
Analyzing electronic health records (EHR) poses significant challenges because often few samples are available describing a patients health and, when available, their information content is highly diverse. The problem we consider is how to integrate sparsely sampled longitudinal data, missing measurements informative of the underlying health status and fixed demographic information to produce estimated survival distributions updated through a patients follow up. We propose a nonparametric probabilistic model that generates survival trajectories from an ensemble of Bayesian trees that learns variable interactions over time without specifying beforehand the longitudinal process. We show performance improvements on Primary Biliary Cirrhosis patient data.
Though they may offer valuable patient and disease information that is impossible to study in a randomized trial, clinical disease registries also require special care and attention in causal inference. Registry data may be incomplete, inconsistent, and subject to confounding. In this paper we aim to address several analytical issues in estimating treatment effects that plague clinical registries such as the Emory amyotrophic lateral sclerosis (ALS) Clinic Registry. When attempting to assess the effect of a surgical insertion of a percutaneous endoscopic gastrostomy (PEG) tube on body mass index (BMI) using the data from the ALS Clinic Registry, one must combat issues of confounding, censoring by death, and missing outcome data that have not been addressed in previous studies of PEG. We propose a causal inference framework for estimating the survivor average causal effect (SACE) of PEG, which incorporates a model for generalized propensity scores to correct for confounding by pre-treatment variables, a model for principal stratification to account for censoring by death, and a model for the missing data mechanism. Applying the proposed framework to the ALS Clinic Registry Data, our analysis shows that PEG has a positive SACE on BMI at month 18 post-baseline; our results likely offer more definitive answers regarding the effect of PEG than previous studies of PEG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا