ﻻ يوجد ملخص باللغة العربية
Using the time-dependent Ginzburg-Landau equation with the complex relaxation time and the Maxwell equation, we systematically examine transverse motion of vortex dynamics in the presence of pinning disorders. Consequently, in a plastic flow phase in which moving and pinned vortices coexist, we find that the Hall voltage generally changes its sign. The origin of the sign change is ascribed to a fact that moving vortices are strongly drifted by circular current of pinned vortices and the enforced transverse moving direction becomes opposite to that by transport current. This suggests that the Hall sign change is a behavior common in all disordered type-II superconductors.
We predict a novel buckling instability in the critical state of thin type-II superconductors with strong pinning. This elastic instability appears in high perpendicular magnetic fields and may cause an almost periodic series of flux jumps visible in
We fabricate van der Waals heterostructure devices using few unit cell thick Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ for magnetotransport measurements. The superconducting transition temperature and carrier density in atomically thin samples can be maintai
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysi
The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into the fundamental pinning mechanisms, we have explored the case
Chiral superconductors exhibit novel transport properties that depend on the topology of the order parameter, topology of the Fermi surface, the spectrum of bulk and edge Fermionic excitations, and the structure of the impurity potential. In the case