ﻻ يوجد ملخص باللغة العربية
Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of Type Ibc supernovae (SNe Ibc). They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. To date, central engine-driven SNe have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected due to limited satellite sensitivity or beaming of the collimated emission away from our line-of-sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for SNe Ibc with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary Type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. The lack of a coincident GRB makes SN 2009bb the first engine-driven SN discovered without a detected gamma-ray signal. A comparison with our extensive radio survey of SNe Ibc reveals that the fraction harboring central engines is low, ~1 percent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Our study demonstrates that upcoming optical and radio surveys will soon rival gamma-ray satellites in pinpointing the nearest engine-driven SNe. A similar result for a different supernova is reported independently.
We report the discovery of the nearby long, soft GRB 100316D, and the subsequent unveiling of its host galaxy and associated supernova. We study the extremely unusual prompt emission with time-resolved gamma-ray to X-ray spectroscopy and find that a
We present the largest spectroscopic study of the host environments of Type Ibc supernovae (SN Ibc) discovered exclusively by untargeted SN searches. Past studies of SN Ibc host environments have been biased towards high-mass, high-metallicity galaxi
The TESS exoplanet-hunting mission detected the rising and decaying optical afterglow of GRB 191016A, a long Gamma-Ray Burst (GRB) detected by Swift-BAT but without prompt XRT or UVOT follow-up due to proximity to the moon. The afterglow has a late p
A preponderance of evidence links long-duration, soft-spectrum gamma-ray bursts (GRBs) with the death of massive stars. The observations of the GRB-supernova (SN) connection present the most direct evidence of this physical link. We summarize 30 GRB-
The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of