ترغب بنشر مسار تعليمي؟ اضغط هنا

Contamination of short GRBs by giant magnetar flares: Significance of downward revision in distance to SGR 1806-20

32   0   0.0 ( 0 )
 نشر من قبل Dr Paul A. Crowther
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul A Crowther




اسأل ChatGPT حول البحث

We highlight how the downward revision in the distance to the star cluster associated with SGR 1806-20 by Bibby et al. reconciles the apparent low contamination of BATSE short GRBs by intense flares from extragalactic magnetars without recourse to modifying the frequency of one such flare per 30 years per Milky Way galaxy. We also discuss the variety in progenitor initial masses of magnetars based upon cluster ages, ranging from ~50 Msun for SGR 1806-20 and iAXP CXOU J164710.2-455216 Westerlund 1 to ~17 Msun for SGR 1900+14 according to Davies et al. and presumably also 1E 1841-045 if it originated from one of the massive RSG clusters #2 or #3.

قيم البحث

اقرأ أيضاً

59 - S. Corbel 2003
We present new millimeter and infrared spectroscopic observations towards the radio nebula G10.0-0.3, which is powered by the wind of the Luminous Blue Variable star LBV 1806-20, also closely associated with the soft gamma-ray repeater SGR 1806-20, a nd believed to be located in the giant Galactic HII complex W31. Based on observations of CO emission lines and NH_3 absorption features from molecular clouds along the line of sight to G10.0-0.3, as well as the radial velocity and optical extinction of the star powering the nebula, we determine its distance to be 15.1$^{+1.8}_{-1.3}$ kpc in agreement with Corbel et al. (1997). In addition, this strengthens the association of SGR 1806-20 with a massive molecular cloud at the same distance. All soft gamma-ray repeaters with precise location are now found to be associated with a site of massive star formation or molecular cloud. We also show that W31 consists of at least two distinct components along the line of sight. We suggest that G10.2-0.3 and G10.6-0.4 are located on the -30 km/s spiral arm at a distance from the Sun of 4.5 $pm$ 0.6 kpc and that G10.3-0.1 may be associated with a massive molecular cloud at the same distance as the LBV star, i.e. 15.1$^{+1.8}_{-1.3}$ kpc, implying that W31 could be decomposed into two components along the line of sight.
57 - S. Corbel 1996
We present CO(J=1-0) observations in the direction of the Soft Gamma Repeater SGR 1806-20 with the SEST telescope. We detected several molecular clouds, and we discuss in this paper the implications of these observations for the distance to the X-ray counterpart AX 1805.7-2025, the supernova remnant G10.0-0.3 and the very luminous O9-B2 star detected in the line of sight. The distance of SGR 1806-20 is estimated to be 14.5 +/- 1.4 kpc and this Soft Gamma Repeater is very likely associated with one of the brightest HII regions in the Galaxy, W31. The large size of G10.0-0.3 (25 x 38 pc) for a young supernova remnant possibly powered by a central pulsar (AX 1805.7-2025) indicates that G10.0-0.3 could be expanding in the very low density region produced by the wind of the blue star.
265 - M. Coleman Miller 2018
The discovery of quasi-periodic brightness oscillations (QPOs) in the X-ray emission accompanying the giant flares of the soft gamma-ray repeaters SGR 1806-20 and SGR 1900+14 has led to intense speculation about their nature and what they might revea l about the interiors of neutron stars. Here we take a fresh look at the giant flare data for SGR 1806-20, and in particular we analyze short segments of the post-peak emission using a Bayesian procedure that has not previously been applied to these data. We find at best weak evidence that any QPO persists for more than $sim 1$ second; instead, almost all the data are consistent with a picture in which there are numerous independently-excited modes that decay within a few tenths of a second. This has interesting implications for the rapidity of decay of the QPO modes, which could occur by the previously-suggested mechanism of coupling to the MHD continuum. The strongest QPOs favor certain rotational phases, which might suggest special regions of the crust or of the magnetosphere. We also find several previously unreported QPOs in these data, which may help in tracking down their origin.
Magnetars are highly magnetized neutron stars that are characterized by recurrent emission of short-duration bursts in soft gamma-rays/hard X-rays. Recently, FRB 200428 were found to be associated with an X-ray burst from a Galactic magnetar. Two fas t radio bursts (FRBs) show mysterious periodic activity. However, whether magnetar X-ray bursts are periodic phenomena is unclear. In this paper, we investigate the period of SGR 1806-20 activity. More than 3000 short bursts observed by different telescopes are collected, including the observation of RXTE, HETE-2, ICE and Konus. We consider the observation windows and divide the data into two sub-samples to alleviate the effect of unevenly sample. The epoch folding and Lomb-Scargle methods are used to derive the period of short bursts. We find a possible period about $ 398.20 pm 25.45 $ days. While other peaks exist in the periodograms. If the period is real, the connection between short bursts of magnetars and FRBs should be extensively investigated.
We have phase connected a sequence of RXTE PCA observations of SGR 1806-20 covering 178 days. We find a simple secular spin-down model does not adequately fit the data. The period derivative varies gradually during the observations between 8.1 and 11 .7 * 10^-11 s/s (at its highest, ~40% larger than the long term trend), while the average burst rate as seen with BATSE drops throughout the time interval. The phase residuals give no compelling evidence for periodicity, but more closely resemble timing noise as seen in radio pulsars. The magnitude of the timing noise, however, is large relative to the noise level typically found in radio pulsars. Combining these results with the noise levels measured for some AXPs, we find all magnetar candidates have Delta_8 values larger than those expected from a simple extrapolation of the correlation found in radio pulsars. We find that the timing noise in SGR 1806-20 is greater than or equal to the levels found in some accreting systems (e.g., Vela X-1, 4U 1538-52 and 4U 1626-67), but the spin-down of SGR 1806-20 has thus far maintained coherence over 6 years. Alternatively, an orbital model with a period P_orb = 733 days provides a statistically acceptable fit to the data. If the phase residuals are created by Doppler shifts from a gravitationally bound companion, then the allowed parameter space for the mass function (small) and orbital separation (large) rule out the possibility of accretion from the companion sufficient to power the persistent emission from the SGR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا