ترغب بنشر مسار تعليمي؟ اضغط هنا

The Expanding Nebular Remnant of the Recurrent Nova RS Ophiuchi (2006): II. Modeling of Combined Hubble Space Telescope Imaging and Ground-based Spectroscopy

89   0   0.0 ( 0 )
 نشر من قبل Val\\'erio A. R. M. Ribeiro
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report Hubble Space Telescope imaging, obtained 155 and 449 days after the 2006 outburst of the recurrent nova RS Ophiuchi, together with ground-based spectroscopic observations, obtained from the Observatorio Astronomico Nacional en San Pedro Martir, Baja California, Mexico and at the Observatorio Astrofisico Guillermo Haro, at Cananea, Sonora, Mexico. The observations at the first epoch were used as inputs to model the geometry and kinematic structure of the evolving RS Oph nebular remnant. We find that the modeled remnant comprises two distinct co-aligned bipolar components; a low-velocity, high-density innermost (hour glass) region and a more extended, high-velocity (dumbbell) structure. This overall structure is in agreement with that deduced from radio observations and optical interferometry at earlier epochs. We find that the asymmetry observed in the west lobe is an instrumental effect caused by the profile of the HST filter and hence demonstrate that this lobe is approaching the observer. We then conclude that the system has an inclination to the line of sight of 39$^{+1}_{-10}$ degrees. This is in agreement with the inclination of the binary orbit and lends support to the proposal that this morphology is due to the interaction of the outburst ejecta with either an accretion disk around the central white dwarf and/or a pre-existing red giant wind that is significantly denser in the equatorial regions of the binary than at the poles. The second epoch HST observation was also modeled. However, as no spectra were taken at this epoch, it is more difficult to constrain any model. Nevertheless, we demonstrate that between the two HST epochs the outer dumbbell structure seems to have expanded linearly.

قيم البحث

اقرأ أيضاً

102 - M.F. Bode 2007
We report Hubble Space Telescope imaging obtained 155 days after the 2006 outburst of RS Ophiuchi. We detect extended emission in both [O III] and [Ne V] lines. In both lines, the remnant has a double ring structure. The E-W orientation and total ext ent of these structures (580+-50 AU at d=1.6kpc) is consistent with that expected due to expansion of emitting regions imaged earlier in the outburst at radio wavelengths. Expansion at high velocity appears to have been roughly constant in the E-W direction (v_{exp} = 3200+-300 km/s in the plane of the sky), with tentative evidence of deceleration N-S. We present a bipolar model of the remnant whose inclination is consistent with that of the central binary. The true expansion velocities of the polar components are then v = 5600+-1100 km/s. We suggest that the bipolar morphology of the remnant results from interaction of the outburst ejecta with a circumstellar medium that is significantly denser in the equatorial regions of the binary than at the poles. This is also consistent with observations of shock evolution in the X-ray and the possible presence of dust in the infrared. Furthermore, it is in line with models of the shaping of planetary nebulae with close binary central systems, and also with recent observations relating to the progenitors of Type Ia supernovae, for which recurrent novae are a proposed candidate. Our observations also reveal more extended structures to the S and E of the remnant whose possible origin is briefly discussed.
359 - D. J. Harman 2009
We report {it Hubble Space Telescope} imaging obtained 155 days and 449 days after the 2006 outburst of RS Ophiuchi. Both epochs show evidence of extended emission, consistent with that seen in earlier radio observations, and a maximum expansion rate of $3200pm300$ km s$^{-1}$ (in the plane of the sky). The extended structure is consistent with the remnant having a bipolar morphology with an inclination similar to that determined for the binary.
Optical spectra of the 2006 outburst of RS Ophiuchi beginning one day after discovery to over a year after the outburst are presented here. The spectral evolution is found to be similar to that in previous outbursts. The early phase spectra are domin ated by hydrogen and helium (I & II) lines. Coronal and nebular lines appear in the later phases. Emission line widths are found to narrow with time, which is interpreted as a shock expanding into the red giant wind. Using the photoionisation code CLOUDY, spectra at nine epochs spanning 14 months after the outburst peak, thus covering a broad range of ionisation and excitation levels in the ejecta, are modelled. The best-fit model parameters indicate the presence of a hot white dwarf source with a roughly constant luminosity of 1.26 x 10^{37} erg/s. During first three months, the abundances (by number) of He, N, O, Ne, Ar, Fe, Ca, S and Ni are found above solar abundances; abundances of these elements decreased in the later phase. Also presented are spectra obtained during quiescence. Photoionisation model of the quiescence spectrum indicates the presence of a low luminosity accretion disk. The helium abundance is found to be subsolar at quiescence.
With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst range d from a few 1.E-5 sollar mass to 3.3E-4 sollar mass, and assuming a mass accretion rate of 1.E-8 to 1.E-7 Sollar mass/yr for 44yrs, it has been concluded that the white dwaf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope (HST) COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8kpc; Sokoloski et al. 2013, larger than the previous 3.5kpc estimate), our derived reddening of E(B-V)=0.35 (based on combined IUE and GALEX spectra) and NLTE disk modeling (compared to black body and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 < E(B-V) < 0.50) and white dwaf mass (0.70 to 1.35 Sollar mass) the accreted mass is larger than the ejected mass. Only for a low reddening (0.25 and smaller) combined with a large white dwaf mass (0.9 sollar mass and larger) is the ejected mass larger than the accreted one. However, the best spectral fitting results are obtained for a larger value of the reddening.
We present near infrared spectroscopy of the recurrent nova RS Oph obtained on several occasions after its latest outburst in 2006 February. The 1-5 mircon spectra are dominated by the red giant, but the H I, He I, and coronal lines present during th e eruption are present in all our observations. From the fits of the computed infrared spectral energy distributions to the observed fluxes we find T_eff=4200+/-200,K for the red giant. The first overtone CO bands at 2.3 micron, formed in the atmosphere of the red giant, are variable. The spectra clearly exhibit an infrared excess due to dust emission longward of 5 micron; we estimate an effective temperature for the emitting dust shell of 500K, and find that the dust emission is also variable, being beyond the limit of detection in 2007. Most likely, the secondary star in RS Oph is intrinsically variable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا