ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of heavy ion beam losses from collimation

76   0   0.0 ( 0 )
 نشر من قبل Roderik Bruce
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The collimation efficiency for Pb ion beams in the LHC is predicted to be lower than requirements. Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not intercepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements and simulations of loss patterns generated by a prototype LHC collimator in the CERN SPS. Measurements were performed at two different energies and angles of the collimator. We also compare with proton loss maps and find a qualitative difference between Pb ions and protons, with the maximum loss rate observed at different places in the ring. This behavior was predicted by simulations and provides a valuable benchmark of our understanding of ion beam losses caused by collimation.

قيم البحث

اقرأ أيضاً

220 - R. Bruce 2007
We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the Large Hadron Collider (LHC) when it operates with 208P b82+ ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon 63Cu29+ ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beampipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.
The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the el ectric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.
86 - V. Kain 2016
A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.
The repeated passage of a coasting ion beam of a storage ring through a thin target induces a shift in the revolution frequency due to the energy loss in the target. Since the frequency shift is proportional to the beam-target overlap, its measuremen t offers the possibility of determining the target thickness and hence the corresponding luminosity in an experiment. This effect has been investigated with an internal proton beam of energy 2.65 GeV at the COSY-Julich accelerator using the ANKE spectrometer and a hydrogen cluster-jet target. Possible sources of error, especially those arising from the influence of residual gas in the ring, were carefully studied, resulting in a accuracy of better than 5%. The luminosity determined in this way was used, in conjunction with measurements in the ANKE forward detector, to determine the cross section for elastic proton-proton scattering. The result is compared to published data as well as to the predictions of a phase shift solution. The practicability and the limitations of the energy-loss method are discussed.
Mitigation of beam backgrounds via collimators is critical for the success of the Belle~II experiment at the SuperKEKB electron-positron collider. We report on an improved simulation methodology, which includes a refined physical description of the c ollimators and beam pipe, our first implementation of collimator tip scattering, and in which the existing beam particle tracking software has been embedded into a new sequential tracking framework. These improvements resolve longstanding discrepancies between measured and predicted Belle~II background levels, and significantly reduce the computing time required to optimize the collimation system in simulation. Finally, we report on collimator aperture scans, which confirm the accuracy of the simulation and suggest a new method for aligning the collimators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا