ترغب بنشر مسار تعليمي؟ اضغط هنا

Artifact Dark Matter from Unified Brane Gravity

131   0   0.0 ( 0 )
 نشر من قبل Ilya Gurwich
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adopting Diracs brane variation prescription, the energy-momentum tensor of a brane gets supplemented by a geometrical (embedding originated) dark component. While the masslessness of the graviton is preserved, and the Newton force law is recovered, the corresponding Newton constant is necessarily lower than the one which governs FRW cosmology. This has the potential to puzzle out cosmological dark matter, a subsequent conjecture concerning galactic dark matter follows.



قيم البحث

اقرأ أيضاً

We analyze, within the framework of unified brane gravity, the weak-field perturbations caused by the presence of matter on a 3-brane. Although deviating from the Randall-Sundrum approach, the masslessness of the graviton is still preserved. In parti cular, the four-dimensional Newton force law is recovered, but serendipitously, the corresponding Newton constant is shown to be necessarily lower than the one which governs FRW cosmology. This has the potential to puzzle out cosmological dark matter. A subsequent conjecture concerning galactic dark matter follows.
The Randall-Sundrum scenario, with a 1+3-dimensional brane in a 5-dimensional bulk spacetime, can be generalized in various ways. We consider the case where the Z2-symmetry at the brane is relaxed, and in addition the gravitational action is generali zed to include an induced gravity term on the brane. We derive the complete set of equations governing the gravitational dynamics for a general brane and bulk, and identify how the asymmetry and the induced gravity act as effective source terms in the projected field equations on the brane. For a Friedmann brane in an anti de Sitter bulk, the solution of the Friedmann equation is given by the solution of a quartic equation. We find the perturbative solutions for small asymmetry, which has an effect at late times.
We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a const ant parameter $w$. For the range of $w$ near $-1$ this dark fluid can play the role of dark energy, while for $w=0$ this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently suggested mechanism of vacuum energy sequestering.
Quantum gravity of a brane-like Universe is formulated, and its Einstein limit is approached. Regge-Teitelboim embedding of Arnowitt-Deser-Misner formalism is carried out. Invoking a novel Lagrange multiplier, accompanying the lapse function and the shift vector, we derive the quadratic Hamiltonian and the corresponding bifurcated Wheeler-Dewitt-like equation. The inclusion of arbitrary matter resembles minimal coupling.
We analyse the emergent cosmological dynamics corresponding to the mean field hydrodynamics of quantum gravity condensates, in the tensorial group field theory formalism. We focus in particular on the cosmological effects of fundamental interactions, and on the contributions from different quantum geometric modes. The general consequence of such interactions is to produce an accelerated expansion of the universe, which can happen both at early times, after the quantum bounce predicted by the model, and at late times. Our main result is that, while this fails to give a compelling inflationary scenario in the early universe, it produces naturally a phantom-like dark energy dynamics at late times, compatible with cosmological observations. By recasting the emergent cosmological dynamics in terms of an effective equation of state, we show that it can generically cross the phantom divide, purely out of quantum gravity effects without the need of any additional phantom matter. Furthermore, we show that the dynamics avoids any Big Rip singularity, approaching instead a de Sitter universe asymptotically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا