ترغب بنشر مسار تعليمي؟ اضغط هنا

Ballistic heat transport of quantum spin excitations as seen in SrCuO2

141   0   0.0 ( 0 )
 نشر من قبل Nikolai Hlubek
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fundamental conservation laws predict ballistic, i.e., dissipationless transport behaviour in one-dimensional quantum magnets. Experimental evidence, however, for such anomalous transport has been lacking ever since. Here we provide experimental evidence for ballistic heat transport in a S=1/2 Heisenberg chain. In particular, we investigate high purity samples of the chain cuprate SrCuO2 and observe a huge magnetic heat conductivity $kappa_{mag}$. An extremely large spinon mean free path of more than a micrometer demonstrates that $kappa_{mag}$ is only limited by extrinsic scattering processes which is a clear signature of ballistic transport in the underlying spin model.

قيم البحث

اقرأ أيضاً

We study the impact of a weak bond disorder on the spinon heat transport in the S=1/2 antiferromagnetic (AFM) Heisenberg chain material Sr_{1-x}Ca_xCuO_2. We observe a drastic suppression in the magnetic heat conductivity kappa_mag even at tiny disor der levels (i.e., Ca-doping levels), in stark contrast to previous findings for kappa_mag of S=1/2 two-dimensional square lattice and two-leg spin-ladder systems, where a similar bond disorder has no effect on kappa_mag. Hence, our results underpin the exceptional role of integrability of the S=1/2 AFM Heisenberg chain model and suggest that the bond disorder effectively destroys the ballistic nature of its heat transport. We further show that the suppression of kappa_mag is captured by an effective spinon-impurity scattering length, which exhibits the same doping dependence as the long-distance exponential decay length of the spin-spin correlation as determined by density-matrix renormalization group calculations.
We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power la w B^n with n=-0.9(3). This result is temperature independent for 5K < T < 300 K. Within conformal field theory and using the Muller ansatz we conclude ballistic spin transport in SrCuO2.
142 - N. Hlubek , X. Zotos , S. Singh 2011
We have investigated the thermal conductivity kappa_mag of high-purity single crystals of the spin chain compound Sr2CuO3 which is considered an excellent realization of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model. We find that th e spinon heat conductivity kappa_mag is strongly enhanced as compared to previous results obtained on samples with lower chemical purity. The analysis of kappa_mag allows to compute the spinon mean free path l_mag as a function of temperature. At low-temperature we find l_magsim0.5mum, corresponding to more than 1200 chain unit cells. Upon increasing the temperature, the mean free path decreases strongly and approaches an exponential decay ~1/T*exp(T*/T) which is characteristic for umklapp processes with the energy scale k_B T*. Based on Matthiesens rule we decompose l_mag into a temperature-independent spinon-defect scattering length l0 and a temperature dependent spinon-phonon scattering length l_sp(T). By comparing l_mag(T) of Sr2CuO3 with that of SrCuO2, we show that the spin-phonon interaction, as expressed by l_sp is practically the same in both systems. The comparison of the empirically derived l_sp with model calculations for the spin-phonon interaction of the one-dimensional spin-1/2 XY model yields reasonable agreement with the experimental data.
The S=1/2 spin chain material SrCuO2 doped with 1% S=1 Ni-impurities is studied by inelastic neutron scattering. At low temperatures, the spectrum shows a pseudogap Delta ~ 8 meV, absent in the parent compound, and not related to any structural phase transition. The pseudogap is shown to be a generic feature of quantum spin chains with dilute defects. A simple model based on this idea quantitatively accounts for the exprimental data measured in the temperature range 2-300 K, and allows to represent the momentum-integrated dynamic structure factor in a universal scaling form.
We studied the field dependent thermal conductivity ($kappa$) of Na$_2$Co$_2$TeO$_6$, a compound considered as the manifestation of the Kitaev model based on the high-spin $d^7$ Co$^{2+}$ ions. We found that in-plane magnetic fields beyond a critical value $B_c approx$~10 T are able to drastically enhance $kappa$ at low temperatures, resulting in a double-peak structure of $kappa(T)$ that closely resembles the behavior of $alpha$-RuCl$_3$. This result suggests that heat transport in Na$_2$Co$_2$TeO$_6$ is primarily phononic, and it is strongly affected by scattering from magnetic excitations that are highly tunable by external fields. Interestingly, for magnetic fields $B // a$ (i.e., along the zigzag direction of the Co-Co bonds), there is an extended field range which separates the long-range magnetic order for $Bleq B_capprox10$ T and the partially spin-polarized gapped high-field phase for $Bgtrsim 12$ T. The low-energy phonon scattering is particularly strong in this field range, consistent with the notion that the system becomes a quantum spin liquid with prominent spin fluctuations down to energies of no more than 2 meV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا