ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic Lines and Reflection from the Inner Accretion Disks Around Neutron Stars

73   0   0.0 ( 0 )
 نشر من قبل Edward Cackett
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of neutron star low-mass X-ray binaries have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star low-mass X-ray binaries, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are well fit by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6 - 15 GM/c^2) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 - 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer is illuminating a geometrically thin disk.

قيم البحث

اقرأ أيضاً

We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the g ravity and rotation of the central black hole. The absorption edges in the spectra suffer severe energy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.
We use Smoothed Particle Hydrodynamics to study viscous accretion flows around a weakly magnetic neutron star. We show the formation of multiple ``boundary layers in presence of both cooling and viscosity. We find that with the introduction of a smal l viscosity in a sub-Keplerian flow, much like the wind accretion in HMXBs such as Cir X-1, only a single Normal Boundary Layer (NBOL) forms to adjust the rotational velocity component. With the increase of viscosity, the region extends radially and beyond some critical value, a RAdiative KEplerian Disk/layer (RAKED) forms between the sub-Keplerian flow and the NBOL. When viscosity is increased further only NBOL and RAKED remain. In all such cases, the CENtrifugal pressure dominated BOundary Layer (CENBOL) is formed, away from the star, as in the case of black holes. This is the first self-consistent study where such a transition from sub-Keplerian flows has been reported for neutron stars. We also identify the connection between accretion and ejection of matter, following the Two-Component Advective Flow for black holes, for neutron stars. The results are crucial in the understanding of the formation of disks, boundary layers and outflows in wind dominated neutron star systems.
439 - C. Tapia , S. Lizano 2017
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and collaborators. We consider disks around low mass protostars, T Tauri stars, and FU Ori stars with different mass-to-flux ratios $lambda_{rm sys}$. We calculate the spectral energy distribution and the antenna temperature profiles at 1 mm and 7 mm convolved with the ALMA and VLA beams. We find that disks with weaker magnetization (high values of $lambda_{rm sys}$) emit more than disks with stronger magnetization (low values of $lambda_{rm sys}$). This happens because the former are denser, hotter and have larger aspect ratios, receiving more irradiation from the central star. The level of magnetization also affects the optical depth at millimeter wavelengths, being larger for disks with high $lambda_{rm sys}$. In general, disks around low mass protostars and T Tauri stars are optically thin at 7 mm while disks around FU Ori are optically thick. A qualitative comparison of the emission of these magnetized disks, including heating by an external envelope, with the observed millimeter antenna temperature profiles of HL Tau indicates that large cm grains are required to increase the optical depth and reproduce the observed 7 mm emission at large radii.
142 - O. Korobkin 2012
When an accretion disk falls prey to the runaway instability, a large portion of its mass is devoured by the black hole within a few dynamical times. Despite decades of effort, it is still unclear under what conditions such an instability can occur. The technically most advanced relativistic simulations to date were unable to find a clear sign for the onset of the instability. In this work, we present three-dimensional relativistic hydrodynamics simulations of accretion disks around black holes in dynamical space-time. We focus on the configurations that are expected to be particularly prone to the development of this instability. We demonstrate, for the first time, that the fully self-consistent general relativistic evolution does indeed produce a runaway instability.
The disks of active galactic nuclei (AGNs) have emerged as a rich environment for the evolution of stars and their compact remnants. The very dense medium favors rapid accretion, while torques and migration traps enhance binary formation and mergers. Both long and short gamma-ray bursts (GRBs) are hence expected. We show that AGN disks constitute an ideal environment for another interesting phenomenon: the accretion induced collapse (AIC) of neutron stars (NSs) to black holes (BHs). Rapid accretion in the dense disks can cause NSs to grow to the point of exceeding the maximum mass allowed by their equation of state. General relativistic magnetohydrodynamical simulations have shown that electromagnetic signatures are expected if the NS is surrounded by a mini-disk prior to collapse, which then rapidly accretes onto the BH, and/or if the NS is highly magnetized, from reconnection of the magnetosphere during collapse. Here we compute the rates of AICs and their locations within the disks for both isolated NSs, and for (initially stable) NSs formed from NS-NS mergers. We find that the global AIC rates are $sim 0.07-20$~Gpc$^{-3}$~yr$^{-1}$, and we discuss their observable prospects and signatures as they emerge from the dense disk environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا