ﻻ يوجد ملخص باللغة العربية
We propose a model in which intermediate-mass black holes (IMBHs) with mass of ~10000 Msun are formed in early dark matter halos. We carry out detailed stellar evolution calculations for accreting primordial stars including annihilation energy of dark matter particles. We follow the stellar core evolution consistently up to gravitational collapse. We show that very massive stars, as massive as 10000 Msun, can be formed in an early dark matter halo. Such stars are extremely bright with Log L/Lsun > 8.2. They gravitationally collapse to form IMBHs. These black holes could have seeded the formation of early super-massive blackholes.
Black holes with masses of $rm 10^6-10^9~M_{odot}$ dwell in the centers of most galaxies, but their formation mechanisms are not well known. A subdominant dissipative component of dark matter with similar properties to the ordinary baryons, known as
The dark matter (DM) can consist of the primordial black holes (PBHs) in addition to the conventional weakly interacting massive particles (WIMPs). The Poisson fluctuations of the PBH number density produce the isocurvature perturbations which can do
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of
Seven observations point towards the existence of primordial black holes (PBH), constituting the whole or an important fraction of the dark matter in the Universe: the mass and spin of black holes detected by Advanced LIGO/VIRGO, the detection of mic
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with