ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling thermal and non-thermal excited states in a charge-transfer insulator by time-and-frequency resolved pump-probe spectroscopy

45   0   0.0 ( 0 )
 نشر من قبل Damiano Nardi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-and-frequency resolved pump-probe optical spectroscopy is used to investigate the effect of the impulsive injection of delocalized excitations through a charge-transfer process in insulating CuGeO3. A large broadening of the charge-transfer edge is observed on the sub-ps timescale. The modification of this spectral feature can not be attributed to the local increase of the effective temperature, as a consequence of the energy absorbed by the pump pulse. The measured modifications of the optical properties of the system are consistent with the creation of a non-thermal state, metastable on the ps timescale, after the pump-induced impulsive modification of the electron interactions.

قيم البحث

اقرأ أيضاً

Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-res olved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.
In high-resolution core-valence-valence (CVV) Auger electron spectroscopy from the surface of a solid at thermal equilibrium, the main correlation satellite, visible in the case of strong valence-electron correlations, corresponds to a bound state of the two holes in the final state of the CVV Auger process. We discuss the physical significance of this satellite in nonequilibrium pump-probe Auger spectroscopy by numerical analysis of a single-band Hubbard-type model system including core states and a continuum of high-energy scattering states. It turns out that the spectrum of the photo-doped system, due to the increased double occupancy, shares features with the equilibrium spectrum at higher fillings. The pumping of doublons can be watched when working with overlapping pulses at short $Delta t$. For larger pump-probe delays $Delta t$ and on the typical femtosecond time scale for electronic relaxation processes, spectra are hardly $Delta t$-dependent, reflecting the high stability of bound two-hole states for strong Hubbard-$U$. We argue that taking into account the spatial expansion of single-particle orbitals when these are doubly occupied, as described by the dynamical Hubbard model, produces an oscillation of the barycenter of the satellite as a function of $Delta t$. Pump-probe Auger-electron spectroscopy is thus highly sensitive to dynamical screening of the Coulomb interaction.
144 - Y. Ishida , T. Otsu , T.Shimada 2015
Recent studies suggest that an exemplary Kondo insulator SmB6 belongs to a new class of topological insulators (TIs), in which non-trivial spin-polarized metallic states emerge on surface upon the formation of Kondo hybridization gap in the bulk. Rem arkably, the bulk resistivity reaches more than 20 Ohm cm at 4 K, making SmB6 a candidate for a so-called bulk-insulating TI. We here investigate optical-pulse responses of SmB6 by pump-and-probe photoemission spectroscopy. Surface photovoltage effect is observed below ~90 K. This indicates that an optically-active band bending region develops beneath the novel metallic surface upon the bulk-gap evolution. The photovoltaic effect persists for >200 microsec, which is long enough to be detected by electronics devices, and could be utilized for optical gating of the novel metallic surface.
The functionality of logic and memory elements in current electronics is based on multi-stability, driven either by manipulating local concentrations of electrons in transistors, or by switching between equivalent states of a material with a degener- ate ground state in magnetic or ferroelectric materials. Another possibility is offered by phase transitions with switching between metallic and insulating phases, but classical phase transitions are limited in speed by slow nucleation, proliferation of domains and hysteresis. We can in principle avoid these problems by using quantum states for switching, but microscopic systems suffer from decoherence which prohibits their use in everyday devices. Macroscopic quantum states, such as the superconducting ground state have the advantage that on a fundamental level they do not suffer from decoherence plaguing microscopic systems. Here we demonstrate for the first time ultrafast non-thermal switching between different metastable electronically ordered states by pulsed electrical charge injection. The macroscopic nature of the many-body quantum states(1-4) - which are not part of the equilibrium phase diagram - gives rise to unprecedented stability and remarka- bly sharp switching thresholds. Fast sub-50 ps switching, large associated re- sistance changes, 2-terminal operation and demonstrable high fidelity of bi-stability control suggest new opportunities for the use of macroscopic quantum states in electronics, particularly for an ultrafast non-volatile quantum charge-order resistive random access memory (QCOR-RAM).
122 - O. Abdurazakov 2018
We study the role of excited phonon populations in the relaxation rates of nonequilibrium electrons using a nonequilibrium Greens function formalism. The transient modifications in the phononic properties are accounted for by self-consistently solvin g the Dyson equation for the electron and phonon Greens functions. The pump induced changes manifest in both the electronic and phononic spectral functions. We find that the excited phonon populations suppress the decay rates of nonequilibrium electrons due to enhanced phonon absorption. The increased phonon occupation also sets the nonequilibrium decay rates and the equilibrium scattering rates apart. The decay rates are found to be time-dependent, and this is illustrated in the experimentally observed population decay of photoexcited $mathrm{Bi}_{1.5}mathrm{Sb}_{0.5} mathrm{Te}_{1.7}mathrm{Se}_{1.3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا