ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical heavy-quark recombination and the non-photonic single electron puzzle at RHIC

103   0   0.0 ( 0 )
 نشر من قبل Javier Magnin
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Alejandro Ayala




اسأل ChatGPT حول البحث

We show that the single, non-photonic electron nuclear modification factor $R_{AA}^e$ is affected by the thermal enhancement of the heavy-baryon to heavy-meson ratio in relativistic heavy-ion collisions with respect to proton-proton collisions. We make use of the dynamical quark recombination model to compute such ratio and show that this produces a sizable suppression factor for $R_{AA}^e$ at intermediate transverse momenta. We argue that such suppression factor needs to be considered, in addition to the energy loss contribution, in calculations of $R_{AA}^e$


قيم البحث

اقرأ أيضاً

67 - Sven Soff 2002
We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas. We compare the obtained correlation radii with recent data from RHIC. The predicted R_side radii agree with data while the R_out and R_long radii are overestimated. We also address the impact of in-medium modifications, for example, a broadening of the rho-meson, on the correlation radii. In particular, the longitudinal correlation radius R_long is reduced, improving the comparison to data.
206 - Alejandro Ayala 2008
We propose an scenario to study, from a dynamical point of view, the thermal recombination of quarks in the midsts of a relativistic heavy-ion collision. We coin the term dynamical quark recombination to refer to the process of quark-antiquark and th ree-quark clustering, to form mesons and baryons, respectively, as a function of energy density. Using the string-flip model we show that the probabilities to form such clusters differ. We apply these ideas to the calculation of the proton and pion spectra in a Bjorken-like scenario that incorporates the evolution of these probabilities with proper time and compute the proton to pion ratio, comparing to recent RHIC data at the highest energy. We show that for a standard choice of parameters, this ratio reaches one, though the maximum is very sensitive to the initial evolution proper time.
The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes b oth elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. The dependence of the jet quenching parameter $hat{q}$ on medium temperature and jet flavor is quantitatively extracted.
91 - S.J. Lindenbaum 2000
We believe that one can have serious reservations as to whether heavy ion collisions (e.g. 100 GeV/n Au + 100 GeV/n Au) can lead to Thermal and Chemical equilibrium over large regions (particularly if it is assumed this happens whenever QGP is produc ed at RHIC-that is if it is produced). It is at present not clear that the collision dynamics and times available will lead to this. An alternate scenario proposed by Van Hove where localized in rapidity bubbles of plasma may well be more probable, and may well occur at least some of the time, and some of the time mainly survive to the final state. If this occurs we have developed a series of event generators to extend and describe these phenomena. A Van Hove type[6,7] spherical bubble at eta=0 is embedded in a resonable event generator in qualitative agreement with Hijing etc[12]. The plasma bubble hadronized at a temperature of 170 Mev according to the model developed by Koch, Muller and Rafelski[21]. The amount of available bubble energy is selected by that in a small central circular cross-section of radius approx 1.3fm or 2.5fm in 100 Gev/n Au+AU, central events The results predict Possible Striking Signals for a QGP. We are also applying these techniques to investigating Kharzeev and Pisarski bubbles of metastable vacua with odd CP.
135 - Sven Soff 2000
We calculate the Gaussian radius parameters of the pion-emitting source in high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons. Such a model leads to a very long-li ved dissipative hadronic rescattering phase which dominates the properties of the two-pion correlation functions. The radii are found to depend only weakly on the thermalization time tau_i, the critical temperature T_c (and thus the latent heat), and the specific entropy of the QGP. The dissipative hadronic stage enforces large variations of the pion emission times around the mean. Therefore, the model calculations suggest a rapid increase of R_out/R_side as a function of K_T if a thermalized QGP were formed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا