ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mass Structure of the Galaxy Cluster Cl0024+1654 from a Full Lensing Analysis of Joint Subaru and ACS/NIC3 Observations

243   0   0.0 ( 0 )
 نشر من قبل Keiichi Umetsu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Keiichi Umetsu




اسأل ChatGPT حول البحث

We derive an accurate mass distribution of the rich galaxy cluster Cl0024+1654 (z=0.395) based on deep Subaru BR_{c}z imaging and our recent comprehensive strong lensing analysis of HST/ACS/NIC3 observations. We obtain the weak lensing distortion and magnification of undilted samples of red and blue background galaxies by carefully combining all color and positional information. Unlike previous work, the weak and strong lensing are in excellent agreement where the data overlap. The joint mass profile continuously steepens out to the virial radius with only a minor contribution sim 10% in the mass from known subcluster at a projected distance of sim 700kpc/h. The projected mass distribution for the entire cluster is well fitted with a single Navarro-Frenk-White model with a virial mass, M_{vir} = (1.2 pm 0.2) times 10^{15} M_{sun}/h, and a concentration, c_{vir} = 9.2^{+1.4}_{-1.2}. This model fit is fully consistent with the depletion of the red background counts, providing independent confirmation. Careful examination and interpretation of X-ray and dynamical data strongly suggest that this cluster system is in a post collision state, which we show is consistent with our well-defined mass profile for a major merger occurring along the line of sight, viewed approximately 2-3Gyr after impact when the gravitational potential has had time to relax in the center, before the gas has recovered and before the outskirts are fully virialized. Finally, our full lensing analysis provides a model-independent constraint of M_{2D}(<r_{vir}) = (1.4 pm 0.3) times 10^{15} M_{sun}/h for the projected mass of the whole system, including any currently unbound material beyond the virial radius, which can constrain the sum of the two pre-merger cluster masses when designing simulations to explore this system.



قيم البحث

اقرأ أيضاً

We investigate to which precision local magnification ratios, $mathcal{J}$, ratios of convergences, $f$, and reduced shears, $g = (g_{1}, g_{2})$, can be determined model-independently for the five resolved multiple images of the source at $z_mathrm{ s}=1.675$ in CL0024. We also determine if a comparison to the respective results obtained by the parametric modelling program Lenstool and by the non-parametric modelling program Grale can detect biases in the lens models. For these model-based approaches we additionally analyse the influence of the number and location of the constraints from multiple images on the local lens properties determined at the positions of the five multiple images of the source at $z_mathrm{s}=1.675$. All approaches show high agreement on the local values of $mathcal{J}$, $f$, and $g$. We find that Lenstool obtains the tightest confidence bounds even for convergences around one using constraints from six multiple image systems, while the best Grale model is generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass corrections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches. Our results are in agreement with previous findings, supporting the light-traces-mass assumption and the merger hypothesis for CL0024. Comparing the three different approaches allows to detect modelling biases. Given that the lens properties remain approximately constant over the extension of the image areas covered by the resolvable brightness features, the model-independent approach determines the local lens properties to a comparable precision but within less than a second. (shortened)
We utilize the galaxy shape catalogue from the first-year data release of the Subaru Hyper Suprime-cam Survey (HSC) to study the dark matter content of galaxy groups in the Universe using weak gravitational lensing. As our lens sample, we use galaxy groups that have been spectroscopically selected from the Galaxy Mass and Assembly galaxy survey in approximately 100 sq. degrees of the sky that overlap with the HSC survey. We restrict our analysis to the 1587 groups with at least five group members. We divide these galaxy groups into six bins each of galaxy group luminosity and group member velocity dispersion and measure the coherent tangential ellipticity pattern on background HSC galaxies imprinted by weak gravitational lensing. We measure the weak lensing signal with a signal-to-noise ratio of 55 and 51 for these two different selections, respectively. We use a Bayesian halo model framework to infer the halo mass distribution of our galaxy groups binned in the two different observable properties and obtain constraints on the power-law scaling relation between mean halo masses and the two group observable properties. We obtain a 5 percent constraint on the amplitude of the scaling relation between halo mass and group luminosity with $langle Mrangle = (0.81pm0.04)times10^{14}h^{-1}M_odot$ for $L_{rm grp}=10^{11.5}h^{-2}L_odot$, and a power-law index of $alpha=1.01pm0.07$. We also obtain a 5-percent constraint on the amplitude of the scaling relation between halo mass and velocity dispersion with $langle Mrangle=(0.93pm0.05)times10^{14}h^{-1}M_odot$ for $sigma=500{,rm kms}^{-1}$ and a power-law index $alpha=1.52pm0.10$, although these scaling relations are sensitive to the exact cuts applied to the number of group members. Comparisons with similar scaling relations from the literature indicate that our results are consistent, but have significantly reduced errors.
We present a weak-lensing analysis of the merging {em Frontier Fields} (FF) cluster Abell~2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneo usly modeling the two-dimensional reduced shear field using a combination of a Navarro--Frenk--White (NFW) model for the main core and truncated NFW models for the subhalos, we determine their masses and locations. The total mass of the system is constrained as $M_mathrm{200c} = (2.06pm0.42)times10^{15},M_odot$. The most massive clump is the southern component with $M_mathrm{200c} = (7.7pm3.4)times10^{14},M_odot$, followed by the western substructure ($M_mathrm{200c} = (4.5pm2.0)times10^{14},M_odot$) and two smaller substructures to the northeast ($M_mathrm{200c} = (2.8pm1.6)times10^{14},M_odot$) and northwest ($M_mathrm{200c} = (1.9pm1.2)times10^{14},M_odot$). The presence of the four substructures supports the picture of multiple mergers. Using a composite of hydrodynamical binary simulations we explain this complicated system without the need for a slingshot effect to produce the northwest X-ray interloper, as previously proposed. The locations of the substructures appear to be offset from both the gas ($87^{+34}_{-28}$ arcsec, 90% CL) and the galaxies ($72^{+34}_{-53}$ arcsec, 90% CL) in the case of the northwestern and western subhalos. To confirm or refute these findings, high resolution space-based observations extending beyond the current FF limited coverage to the west and northwestern area are essential.
53 - Naomi Ota 2003
We present a detailed analysis of Chandra X-ray observations of the lensing cluster of galaxies CL0024+17 at z=0.395. We found that the radial temperature profile is consistent with being isothermal out to ~600 kpc and that the average X-ray temperat ure is 4.47 (+0.83, -0.54) keV. The X-ray surface brightness profile is represented by the sum of extended emission centered at the central bright elliptical galaxy with a small core of 50 kpc and more extended emission which can be well described by a spherical beta-model with a core radius of about 210 kpc. Assuming the X-ray emitting gas to be in hydrostatic equilibrium, we estimated the X-ray mass within the arc radius and found it is significantly smaller than the strong lensing mass by a factor of about 2--3. We detected a strong redshifted iron K line in the X-ray spectrum from the cluster for the first time and find the metal abundance to be 0.76 (+0.37, -0.31) solar.
We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z=0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVRIz imaging and our recent 16-band Hubble Space Teles cope observations taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program. We find good agreement in the regions of overlap between several weak and strong lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large scale structure with the major axis running approximately north-west south-east (NW-SE), aligned with the cluster and its brightest galaxy shapes, showing elongation with a sim 2:1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope dlnSigma/dlnRsim -1 at cluster outskirts (R>1Mpc/h), whereas the mass distribution excluding the NW-SE excess regions steepens further out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M_{vir}=(1.1pm 0.2pm 0.1)times 10^{15} M_{sun}/h and a halo concentration c_{vir} = 6.9pm 1.0pm 1.2 (sim 5.7 when the central 50kpc/h is excluded), which falls in the range 4< <c> <7 of average c(M,z) predictions for relaxed clusters from recent Lambda cold dark matter simulations. Our full lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, yield a cumulative gas mass fraction of 13.7^{+4.5}_{-3.0}% at 0.7Mpc/h (approx 1.7r_{2500}), a typical value observed for high mass clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا