ترغب بنشر مسار تعليمي؟ اضغط هنا

Helimagnon Bands as Universal Spin Excitations of Chiral Magnets

52   0   0.0 ( 0 )
 نشر من قبل Marc Janoschek
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MnSi is a cubic compound with small magnetic anisotropy, which stabilizes a helimagnetic spin spiral that reduces to a ferromagnetic and antiferromagnetic state in the long- and short-wavelength limit, respectively. We report a comprehensive inelastic neutron scattering study of the collective magnetic excitations in the helimagnetic state of MnSi. In our study we observe a rich variety of seemingly anomalous excitation spectra, as measured in well over twenty different locations in reciprocal space. Using a model based on only three parameters, namely the measured pitch of the helix, the measured ferromagnetic spin wave stiffness and the amplitude of the signal, as the only free variable, we can simultaneously account for textit{all} of the measured spectra in excellent quantitative agreement with experiment. Our study identifies the formation of intense, strongly coupled bands of helimagnons as a universal characteristic of systems with weak chiral interactions.

قيم البحث

اقرأ أيضاً

We experimentally study magnetic resonances in the helical and conical magnetic phases of the chiral magnetic insulator Cu$_2$OSeO$_3$ at the temperature $T$=5 K. Using a broadband microwave spectroscopy technique based on vector network analysis, we identify three distinct sets of helimagnon resonances in the frequency range 2 GHz $leq f leq$ 20 GHz. The extracted resonance frequencies are in accordance with calculations of the helimagnon bandstructure found in an intrinsic chiral magnonic crystal. The periodic modulation of the equilibrium spin direction that leads to the formation of the magnonic crystal is a direct consequence of the chiral magnetic ordering caused by the Dzyaloshinskii-Moriya interaction. The opening of magnon band-gaps allows for excitation of helimagnons with wave vectors that are multiples of the spiral wave vector.
We report specific heat, magnetic, and muon spin relaxation measurements performed on a polycrystalline sample of the normal spinel CdHo2S4. The rare-earth ions sit on a lattice of corner-sharing regular tetrahedra as in pyrochlore compounds. Magneti c ordering is detected at Tc ~ 0.87 K. From spin-lattice relaxation rate measurements on both sides of Tc we uncover similar magnetic excitation modes driving the so-called persistent spin dynamics at T < Tc. Unidimensional excitations are argued to be at its origin. Often observed spin loop structures are suggested to support these excitations. The possibility of a generic mechanism for their existence is discussed.
We investigate the unitary evolution following a quantum quench in quantum spin models possessing a (nearly) flat band in the linear excitation spectrum. Inspired by the perspective offered by ensembles of individually trapped Rydberg atoms, we focus on the paradigmatic trasverse-field Ising model on two dimensional lattices featuring a flat band as a result of destructive interference effects (Lieb and Kagome lattice); or a nearly flat band due to a strong energy mismatch among sublattices (triangular lattice). Making use of linear spin-wave theory, we show that quantum quenches, equipped with single-spin imaging, can directly reveal the spatially localized nature of the dispersionless excitations, and their slow propagation or lack of propagation altogether. Moreover we show that Fourier analysis applied to the post-quench time evolution of wavevector-dependent quantities allows for the spectroscopic reconstruction of the flat bands. Our results pave the way for future experiments with Rydberg quantum simulators, which can extend our linear spin-wave study to the fully nonlinear regime, characterized by the appearance of dense, strongly interacting gases of dispersionless excitations.
72 - S. A. Owerre 2018
We present a comprehensive study of strain-induced topological magnon phase transitions in insulating three-dimensional (3D) topological chiral antiferromagnets on the kagome-lattice. We show that by applying (100) uniaxial strain, 3D insulating anti ferromagnetic Weyl magnons (WMs) manifest as an intermediate phase between a strain-induced 3D magnon Chern insulator (MCI) with integer Chern numbers and a 3D trivial magnon insulator with zero Chern number. In addition, we show that strain suppresses the topological thermal Hall conductivity of magnons in these systems. Due to the similarity between 3D insulating and metallic kagome chiral antiferromagnets, we envision that the current results could also manifest in the 3D antiferromagnetic topological Weyl semimetals Mn$_3$Snslash Ge.
Skyrmions are topological spin textures of interest for fundamental science and applications. Previous theoretical studies have focused on systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. We investi gate here systems that break surface inversion symmetry, in addition to possible broken bulk inversion. This leads to two distinct Dzyaloshinskii-Moriya (DM) terms with strengths $D_perp$, arising from Rashba spin-orbit coupling (SOC), and $D_parallel$ from Dresselhaus SOC. We show that skyrmions become progressively more stable with increasing $D_perp/D_parallel$, extending into the regime of easy-plane anisotropy. We find that the spin texture and topological charge density of skyrmions develops nontrivial spatial structure, with quantized topological charge in a unit cell given by a Chern number. Our results give a design principle for tuning Rashba SOC and magnetic anisotropy to stabilize skyrmions in thin films, surfaces, interfaces and bulk magnetic materials that break mirror symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا