ﻻ يوجد ملخص باللغة العربية
We have performed near-infrared monitoring observations of Sgr A*, the Galactic center radio source associated with a supermassive black hole, with the near-infrared camera CIAO and the 36-element adaptive optics system on the Subaru telescope. We observed three flares in the Ks band (2.15micron) during 220 min monitoring on 2008 May 28, and confirmed the flare emission is highly polarized, supporting the synchrotron radiation nature of the near-infrared emission. Clear variations in the degree and position angle of polarization were also detected: an increase of the degree of polarization of about 20 %, and a swing of the position angle of about 60 - 70 degrees in the declining phase of the flares. The correlation between the flux and the degree of polarization can be well explained by the flare emission coming from hotspot(s) orbiting Sgr A*. Comparison with calculations in the literature gives a constraint to the inclination angle i of the orbit of the hotspot around Sgr A*, as 45 < i < 90 degrees (close to edge-on).
We report on the results of new simulations of near-infrared (NIR) observations of the Sagittarius A* (Sgr A*) counterpart associated with the super-massive black hole at the Galactic Center. The observations have been carried out using the NACO adap
Large-amplitude Sgr A* near-infrared flares result from energy injection into electrons near the black hole event horizon. Astrometry data show continuous rotation of the emission region during bright flares, and corresponding rotation of the linear
Infrared observations of Sgr A* probe the region close to the event horizon of the black hole at the Galactic center. These observations can constrain the properties of low-luminosity accretion as well as that of the black hole itself. The GRAVITY in
We address a question whether the observed light curves of X-ray flares originating deep in galactic cores can give us independent constraints on the mass of the central supermassive black hole. To this end we study four brightest flares that have be
We summarize recent observations and modeling of the brightest Sgr A* flare to be observed simultaneously in (near)-infrared and X-rays to date. Trying to explain the spectral characteristics of this flare through inverse Compton mechanisms implies p