ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Teleportation Between Distant Matter Qubits

77   0   0.0 ( 0 )
 نشر من قبل Steven Olmschenk
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum teleportation is the faithful transfer of quantum states between systems, relying on the prior establishment of entanglement and using only classical communication during the transmission. We report teleportation of quantum information between atomic quantum memories separated by about 1 meter. A quantum bit stored in a single trapped ytterbium ion (Yb+) is teleported to a second Yb+ atom with an average fidelity of 90% over a replete set of states. The teleportation protocol is based on the heralded entanglement of the atoms through interference and detection of photons emitted from each atom and guided through optical fibers. This scheme may be used for scalable quantum computation and quantum communication.

قيم البحث

اقرأ أيضاً

Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubit s separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward we achieve teleportation in each attempt while obtaining an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing.
Quantum teleportation is a key ingredient of quantum networks and a building block for quantum computation. Teleportation between distant material objects using light as the quantum information carrier has been a particularly exciting goal. Here we d emonstrate a new element of the quantum teleportation landscape, the deterministic continuous variable (cv) teleportation between distant material objects. The objects are macroscopic atomic ensembles at room temperature. Entanglement required for teleportation is distributed by light propagating from one ensemble to the other. Quantum states encoded in a collective spin state of one ensemble are teleported onto another ensemble using this entanglement and homodyne measurements on light. By implementing process tomography, we demonstrate that the experimental fidelity of the quantum teleportation is higher than that achievable by any classical process. Furthermore, we demonstrate the benefits of deterministic teleportation by teleporting a dynamically changing sequence of spin states from one distant object onto another.
Protocols for probabilistic entanglement-assisted quantum teleportation and for entanglement swapping of material qubits are presented. They are based on a protocol for postselective Bell-state projection which is capable of projecting two material q ubits onto a Bell state with the help of ancillary coherent multiphoton states and postselection by balanced homodyne photodetection. Provided this photonic postselection is successful we explore the theoretical possibilities of realizing unit fidelity quantum teleportation and entanglement swapping with $25%$ success probability. This photon-assisted Bell projection is generated by coupling almost resonantly the two material qubits to single modes of the radiation field in two separate cavities in a Ramsey-type interaction sequence and by measuring the emerged field states in a balanced homodyne detection scenario. As these quantum protocols require basic tools of quantum state engineering of coherent multiphoton states and balanced homodyne photodetection they may offer interesting perspectives in particular for current quantum optical applications in quantum information processing.
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic $Lambda$-system and quantum erasure of the Raman-photon path. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for $|psi^{(+)}rangle$ and $|psi^{(-)}rangle$ states of $61.6pm2.3%$ and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا