ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Substructure and Energetic Neutrinos from the Sun and the Earth

113   0   0.0 ( 0 )
 نشر من قبل Savvas Koushiappas
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the effects of Galactic substructure on energetic neutrinos from annihilation of weakly-interacting massive particles (WIMPs) that have been captured by the Sun and Earth. Substructure gives rise to a time-varying capture rate and thus to time variation in the annihilation rate and resulting energetic-neutrino flux. However, there may be a time lag between the capture and annihilation rates. The energetic-neutrino flux may then be determined by the density of dark matter in the Solar Systems past trajectory, rather than the local density. The signature of such an effect may be sought in the ratio of the direct- to indirect-detection rates.



قيم البحث

اقرأ أيضاً

Dark matter halos contain a wealth of substructure in the form of subhalos and tidal streams. Enhancements in the dark matter density of these regions leads to enhanced rates in direct detection experiments, as well as enhanced dark matter capture ra tes in the Sun and the Earth. Direct detection experiments probe the present-day dark matter density, while energetic neutrinos probe the past history of the dark matter density along the solar systems orbit about the Galactic center. We discuss how an elevated energetic neutrino flux can be used to probe the level of substructure present at the Galactic radius of the solar system.
Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso in Italy. Since the start of its data taking in May 2007, it has provided several measurements of low-energy neutrinos from various sources. At the base of its success, lie unprecedented levels of radio-purity and extensive thermal stabilisation, both resulting from a years-long effort of the collaboration. Solar neutrinos, emitted in the hydrogen-to-helium fusion in the solar core, are important for the understanding of our star, as well as neutrino properties. Borexino is the only experiment that has performed a complete spectroscopy of the emph{pp} chain solar neutrinos (with the exception of the emph{hep} neutrinos contributing to the total flux at $10^{-5}$ level), through the detection of emph{pp}, $^7$Be, emph{pep}, and $^8$B solar neutrinos and has experimentally confirmed the existence of the CNO fusion cycle in the Sun. Borexino has also detected geoneutrinos, antineutrinos from the decays of long-lived radioactive elements inside the Earth, that can be exploited as a new and unique tool to study our planet. This paper reviews the most recent Borexino results on solar and geoneutrinos, from highlighting the key elements of the analyses up to the discussion and interpretation of the results for neutrino, solar, and geophysics.
Solar flare accelerated electron beams propagating away from the Sun can interact with the turbulent interplanetary media, producing plasma waves and type III radio emission. These electron beams are detected near the Earth with a double power-law en ergy spectrum. We simulate electron beam propagation from the Sun to the Earth in the weak turbulent regime taking into account the self-consistent generation of plasma waves and subsequent wave interaction with density fluctuations from low frequency MHD turbulence. The rate at which plasma waves are induced by an unstable electron beam is reduced by background density fluctuations, most acutely when fluctuations have large amplitudes or small wavelengths. This suppression of plasma waves alters the wave distribution which changes the electron beam transport. Assuming a 5/3 Kolmogorov-type power density spectrum of fluctuations often observed near the Earth, we investigate the corresponding energy spectrum of the electron beam after it has propagated 1 AU. We find a direct correlation between the spectrum of the double power-law below the break energy and the turbulent intensity of the background plasma. For an initial spectral index of 3.5, we find a range of spectra below the break energy between 1.6-2.1, with higher levels of turbulence corresponding to higher spectral indices.
Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here we compare, as a function of stellar rotation rate ($Omega$), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of the stellar cosmic ray spectrum as a function of stellar rotation. The maximum stellar cosmic ray energy increases with increasing rotation i.e., towards more active/younger stars. We find that stellar cosmic rays dominate over Galactic cosmic rays in the habitable zone at the pion threshold energy for all stellar ages considered ($t_*=0.6-2.9,$Gyr). However, even at the youngest age, $t_*=0.6,$Gyr, we estimate that $gtrsim,80$MeV stellar cosmic ray fluxes may still be transient in time. At $sim1,$Gyr when life is thought to have emerged on Earth, we demonstrate that stellar cosmic rays dominate over Galactic cosmic rays up to $sim$4$,$GeV energies during flare events. Our results for $t_*=0.6,$Gyr ($Omega = 4Omega_odot$) indicate that $lesssim$GeV stellar cosmic rays are advected from the star to 1$,$au and are impacted by adiabatic losses in this region. The properties of the inner solar wind, currently being investigated by the Parker Solar Probe and Solar Orbiter, are thus important for accurate calculations of stellar cosmic rays around young Sun-like stars.
154 - E.P. Kontar , H. A. S. Reid 2009
Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energe tic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of non-uniform plasma, collisions and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of a) spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, b) apparent early onset of low-energy electron injection, c) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in non-uniform plasma of a single accelerated electron population with an initial power-law spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا