ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of strongly blue shifted mid-infrared [NeIII] and [NeV] emission in ULIRGs

42   0   0.0 ( 0 )
 نشر من قبل Henrik Spoon
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of blue shifted (delta(V) > 200 km/s) mid-infrared [NeIII] and/or [NeV] emission in 25 out of 82 ULIRGs (30% of our sample). The incidence of blue shifted [NeV] emission is even higher (59%) among the sources with a [NeV] detection -- the tell-tale signature of an active galactic nucleus (AGN). Sixteen ULIRGs in our sample, eleven of which are optically classified as AGN, have [NeIII] blue shifts above 200 km/s. A comparison of the line profiles of their 12.81um [NeII], 15.56um [NeIII] and 14.32um [NeV] lines reveals the ionization of the blue shifted gas to increase with blue shift, implying decelerating outflows in a stratified medium, photo-ionized by the AGN. The strong correlation of the line width of the [NeIII] line with the radio luminosity indicates that interaction of expanding radio jets with the dense ISM surrounding the AGN may explain the observed neon line kinematics for the strongest radio sources in this sample.

قيم البحث

اقرأ أيضاً

85 - D. Fadda 2010
We present ultra-deep mid-IR spectra of 48 infrared-luminous galaxies in the GOODS-South field obtained with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14 - 0.5 mJy at 2 4 um) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using PAH and Si absorption features. Only few of these galaxies (5% at z~1 and 12% at z~2) have their total infrared luminosity dominated by emission from AGN. The averaged mid-IR spectra of the z~1 LIRGs and of the z~2 ULIRGs are very similar to the averaged spectrum of local starbursts and HII-like ULIRGs, respectively. We find that 6.2um PAH equivalent widths reach a plateau of ~1 um for L(24 mu) < 1E11 L(sun). At higher luminosities, EW (6.2 mu) anti-correlates with L(24 um). Intriguingly, high-z ULIRGs and SMG lie above the local EW (6.2 um) - L(24 um) relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z~2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L(FIR)/L(1600A) ratios higher than those of starburst galaxies at a given UV slope. The ``IR excess (Daddi et al. 2007) is mostly due to strong 7.7 um PAH emission and under-estimation of UV dust extinction. On the basis of the AGN-powered L (6 um) continuum measured directly from the mid-IR spectra, we estimate an average intrinsic X-ray AGN luminosity of L(2-10 keV) = (0.1 +/- 0.6) 1E43 erg/s, a value substantially lower than the prediction by Daddi et al. (2007).
The mid-infrared ratio [NeIII]15.6mum/[NeII]12.8mum is a strong diagnostic of the ionization state of emission line objects, due to its use of only strong neon emission lines only weakly affected by extinction. However this ratio is not available to ground-based telescopes as only a few spectroscopic windows are available in the MIR. To deal with this problem we aimed to verify if there exists a conversion law between ground-accessible, strong MIR line ratio [SIV]/[NeII] and the diagnostic [NeIII]/[NeII] ratio that can serve as a reference for future ground-based observations. We collated the [SIV]10.5mum, [NeII]12.8mum, [NeIII]15.6mum and [SIII]18.7mum emission line fluxes from a wide range of sources in the rich Spitzer and ISO archives, and compared the [NeIII]/[NeII], [SIV]/[SIII], and [SIV]/[NeII] ratios. We find a strong correlation between the [SIV]/[NeII] and [ eiii]/[ eii] ratio, with a linear fit of log([NeIII]/[NeII]) = 0.81log([SIV]/[NeII])+0.36, accurate to a factor of ~2 over four orders of magnitude in the line ratios. This demonstrates clearly the ability of ground-based infrared spectrographs to do ionization studies of nebulae.
In classical P-Cygni profiles, theory predicts emission to peak at zero rest velocity. However, supernova spectra exhibit emission that is generally blue shifted. While this characteristic has been reported in many supernovae, it is rarely discussed in any detail. Here we present an analysis of H-alpha emission-peaks using a dataset of 95 type II supernovae, quantifying their strength and time evolution. Using a post-explosion time of 30d, we observe a systematic blueshift of H-alpha emission, with a mean value of -2000 kms-1. This offset is greatest at early times but vanishes as supernovae become nebular. Simulations of Dessart et al. (2013) match the observed behaviour, reproducing both its strength and evolution in time. Such blueshifts are a fundamental feature of supernova spectra as they are intimately tied to the density distribution of ejecta, which falls more rapidly than in stellar winds. This steeper density structure causes line emission/absorption to be much more confined; it also exacerbates the occultation of the receding part of the ejecta, biasing line emission to the blue for a distant observer. We conclude that blue-shifted emission-peak offsets of several thousand kms-1 are a generic property of observations, confirmed by models, of photospheric-phase type II supernovae.
Using the Infrared Spectrograph on board the Spitzer Space Telescope, we present low-resolution (64 < lambda / dlambda < 124), mid-infrared (20-38 micron) spectra of 23 high-redshift ULIRGs detected in the Bootes field of the NOAO Deep Wide-Field Sur vey. All of the sources were selected to have 1) fnu(24 micron) > 0.5 mJy; 2) R-[24] > 14 Vega mag; and 3) a prominent rest-frame 1.6 micron stellar photospheric feature redshifted into Spitzers 3-8 micron IRAC bands. Of these, 20 show emission from polycyclic aromatic hydrocarbons (PAHs), usually interpreted as signatures of star formation. The PAH features indicate redshifts in the range 1.5 < z < 3.0, with a mean of <z>=1.96 and a dispersion of 0.30. Based on local templates, these sources have extremely large infrared luminosities, comparable to that of submillimeter galaxies. Our results confirm previous indications that the rest-frame 1.6 micron stellar bump can be efficiently used to select highly obscured starforming galaxies at z~2, and that the fraction of starburst-dominated ULIRGs increases to faint 24 micron flux densities. Using local templates, we find that the observed narrow redshift distribution is due to the fact that the 24 micron detectability of PAH-rich sources peaks sharply at z = 1.9. We can analogously explain the broader redshift distribution of Spitzer-detected AGN-dominated ULIRGs based on the shapes of their SEDs. Finally, we conclude that z~2 sources with a detectable 1.6 micron stellar opacity feature lack sufficient AGN emission to veil the 7.7 micron PAH band.
We report the detection of 6.2um polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7um continuum emission in the z=4.055 submillimeter galaxy GN20, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. This represents the f irst detection of PAH emission at z>4. The strength of the PAH emission feature is consistent with a very high star formation rate of ~1600Msun/yr. We find that this intense starburst powers at least ~1/3 of the faint underlying 6um continuum emission, with an additional, significant (and perhaps dominant) contribution due to a power-law-like hot dust source, which we interpret to likely be a faint, dust-obscured active galactic nucleus (AGN). The inferred 6um AGN continuum luminosity is consistent with a sensitive upper limit on the hard X-ray emission as measured by the Chandra X-Ray Observatory if the previously undetected AGN is Compton-thick. This is in agreement with the finding at optical/infrared wavelengths that the galaxy and its nucleus are heavily dust-obscured. Despite the strong power-law component enhancing the mid-infrared continuum emission, the intense starburst associated with the photon-dominated regions that give rise to the PAH emission appears to dominate the total energy output in the infrared. GN20 is one of the most luminous starburst galaxies known at any redshift, embedded in a rich protocluster of star-forming galaxies. This investigation provides an improved understanding of the energy sources that power such exceptional systems, which represent the extreme end of massive galaxy formation at early cosmic times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا