ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab-initio computation of neutron-rich oxygen isotopes

305   0   0.0 ( 0 )
 نشر من قبل Gaute Hagen
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the binding energy of neutron-rich oxygen isotopes and employ the coupled-cluster method and chiral nucleon-nucleon interactions at next-to-next-to-next-to-leading order with two different cutoffs. We obtain rather well-converged results in model spaces consisting of up to 21 oscillator shells. For interactions with a momentum cutoff of 500 MeV, we find that 28O is stable with respect to 24O, while calculations with a momentum cutoff of 600 MeV result in a slightly unbound 28O. The theoretical error estimates due to the omission of the three-nucleon forces and the truncation of excitations beyond three-particle-three-hole clusters indicate that the stability of 28O cannot be ruled out from ab-initio calculations, and that three-nucleon forces and continuum effects play the dominant role in deciding this question.



قيم البحث

اقرأ أيضاً

164 - G. R. Jansen , J. Engel , G. Hagen 2014
We derive and compute effective valence-space shell-model interactions from ab-initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three -nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular our calculations are consistent with the N=14, 16 shell closures in oxygen-22 and oxygen-24, while for carbon-20 the corresponding N=14 closure is weaker. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons.
We present the first ab initio calculations for open-shell nuclei past the tin isotopic line, focusing on Xe isotopes as well as doubly-magic Sn isotopes. We show that, even for moderately hard interactions, it is possible to obtain meaningful predic tions and that the NNLOsat chiral interaction predicts radii and charge density distributions close to the experiment. We then make a new prediction for ${}^{100}$Sn. This paves the way for ab initio studies of exotic charge density distributions at the limit of the present ab initio mass domain, where experimental data is becoming available. The present study closes the gap between the largest isotopes reachable by ab initio methods and the smallest exotic nuclei accessible to electron scattering experiments.
131 - N. Frank , T. Baumann , D. Bazin 2007
The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) k eV above the neutron separation energy was observed in 23O.
75 - J. G. Li , N. Michel , W. Zuo 2021
The Gamow shell model has shown to efficiently describe weakly bound and unbound nuclear systems, as internucleon correlations and continuum coupling are both taken into account in this model. In the present work, we study neutron-dripline oxygen iso topes. It is hereby demonstrated that the presence of continuum coupling is important for the description of oxygen isotopes at dripline, and especially to assess the eventual bound or unbound character of $^{28}$O. Our results suggest that the ground state of $^{28}$O is weakly unbound and is similar to the narrow resonant $^{26}$O ground state. Predictions of weakly bound and resonance excited states in $^{24text-26}$O are also provided. The asymptotes of the studied many-body states are analyzed via one-body densities, whereby the different radial properties of well bound, loosely bound, resonance states are clearly depicted.
We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by fine-tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully-microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin-parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of deformation parameter is predicted by AMD. Large deformation is seen from 31Mg with N = 19 to a drip-line nucleus 40Mg with N = 28, indicating that both the N = 20 and 28 magicities disappear. N dependence of neutron skin thickness is also predicted by AMD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا