ﻻ يوجد ملخص باللغة العربية
The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as $1/f$ ($f$ is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of $5times10^{17}$m$^{-2}$. We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.
Magnetic atoms on heavy-element superconducting substrates are potential building blocks for realizing topological superconductivity in one- and two-dimensional atomic arrays. Their localized magnetic moments induce so-called Yu-Shiba-Rusinov (YSR) s
A major obstacle to using SQUIDs as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be $O_2$ molecules adsorbed on the surface. Using density functional theory calculations, we find that an $O_2$ molec
We have realized controllable coupling between two three-junction flux qubits by inserting an additional coupler loop between them, containing three Josephson junctions. Two of these are shared with the qubit loops, providing strong qubit--coupler in
We have studied decoherence in a system where two Josephson-junction flux qubits share a part of their superconducting loops and are inductively coupled. By tuning the flux bias condition, we control the sensitivities of the energy levels to flux noi
We study low-temperature transport through a Coulomb blockaded quantum dot (QD) contacted by a normal (N), and a superconducting (S) electrode. Within an effective cotunneling model the conduction electron self energy is calculated to leading order i