A combination of measurements sensitive to the CKM angle $gamma$ from LHCb is performed. The inputs are from analyses of time-integrated $B^{+}rightarrow DK^+$, $B^{0} rightarrow D K^{*0}$, $B^{0} rightarrow D K^+ pi^-$ and $B^{+} rightarrow D K^+pi^
+pi^-$ tree-level decays. In addition, results from a time-dependent analysis of $B_{s}^{0} rightarrow D_{s}^{mp}K^{pm}$ decays are included. The combination yields $gamma = (72.2^{+6.8}_{-7.3})^circ$, where the uncertainty includes systematic effects. The 95.5% confidence level interval is determined to be $gamma in [55.9,85.2]^circ$. A second combination is investigated, also including measurements from $B^{+} rightarrow D pi^+$ and $B^{+} rightarrow D pi^+pi^-pi^+$ decays, which yields compatible results.
A combination of three LHCb measurements of the CKM angle gamma is presented. The decays B->DK and B->Dpi are used, where D denotes an admixture of D0 and D0-bar mesons, decaying into K+K-, pi+pi-, K+-pi-+, K+-pi-+pi+-pi-+, KSpi+pi-, or KSK+K- final
states. All measurements use a dataset corresponding to 1.0 fb-1 of integrated luminosity. Combining results from B->DK decays alone a best-fit value of gamma = 72.0 deg is found, and confidence intervals are set gamma in [56.4,86.7] deg at 68% CL, gamma in [42.6,99.6] deg at 95% CL. The best-fit value of gamma found from a combination of results from B->Dpi decays alone, is gamma = 18.9 deg, and the confidence intervals gamma in [7.4,99.2] deg or [167.9,176.4] deg at 68% CL, are set, without constraint at 95% CL. The combination of results from B->DK and B->Dpi decays gives a best-fit value of gamma = 72.6 deg and the confidence intervals gamma in [55.4,82.3] deg at 68% CL, gamma in [40.2,92.7] deg at 95% CL are set. All values are expressed modulo 180 deg, and are obtained taking into account the effect of D0-D0bar mixing.
We present the first model-independent measurement of the CKM unitarity triangle angle $phi_3$ using $B^{pm}to D(K_{rm S}^0pi^+pi^-pi^0)K^{pm}$ decays, where $D$ indicates either a $D^{0}$ or $overline{D}^{0}$ meson. Measurements of the strong-phase
difference of the $D to K_{rm S}^0pi^+pi^-pi^0$ amplitude obtained from CLEO-c data are used as input. This analysis is based on the full Belle data set of $772times 10^{6}$ $Boverline{B}$ events collected at the $Upsilon(4S)$ resonance. We obtain $phi_3 = (5.7~^{+10.2}_{-8.8} pm 3.5 pm 5.7)^{circ}$ and the suppressed amplitude ratio $r_{B} = 0.323 pm 0.147 pm 0.023 pm 0.051$. Here the first uncertainty is statistical, the second is the experimental systematic, and the third is due to the precision of the strong-phase parameters measured from CLEO-c data. The 95% confidence interval on $phi_3$ is $(-29.7,~109.5)^{circ}$, which is consistent with the current world average.
Crucial inputs for a variety of $CP$-violation studies can be determined through the analysis of pairs of quantum-entangled neutral $D$ mesons, which are produced in the decay of the $psi(3770)$ resonance. The relative strong-phase parameters between
$D^0$ and $bar{D}^0$ in the decays $D^0rightarrow K^0_{S,L}pi^+pi^-$ are studied using 2.93~${rm fb}^{-1}$ of $e^+e^-$ annihilation data delivered by the BEPCII collider and collected by the BESIII detector at a center-of-mass energy of 3.773 GeV. Results are presented in regions of the phase space of the decay. These are the most precise measurements to date of the strong-phase parameters in $D to K_{S,L}^0pi^+pi^-$ decays. Using these parameters, the associated uncertainty on the Cabibbo-Kobayashi-Maskawa angle $gamma/phi_3$ is expected to be between $0.7^circ$ and $1.2^circ$, for an analysis using the decay $B^{pm}rightarrow DK^{pm}$, $Drightarrow K^0_Spi^+pi^-$, where $D$ represents a superposition of $D^0$ and $bar{D^0}$ states. This is a factor of three smaller than that achievable with previous measurements. Furthermore, these results provide valuable input for charm-mixing studies, other measurements of $CP$ violation, and the measurement of strong-phase parameters for other $D$-decay modes.
We report the first determination of the relative strong-phase difference between D^0 -> K^0_S,L K^+ K^- and D^0-bar -> K^0_S,L K^+ K^-. In addition, we present updated measurements of the relative strong-phase difference between D^0 -> K^0_S,L pi^+
pi^- and D^0-bar -> K^0_S,L pi^+ pi^-. Both measurements exploit the quantum coherence between a pair of D^0 and D^0-bar mesons produced from psi(3770) decays. The strong-phase differences measured are important for determining the Cabibbo-Kobayashi-Maskawa angle gamma/phi_3 in B^- -> K^- D^0-tilde decays, where D^0-tilde is a D^0 or D^0-bar meson decaying to K^0_S h^+ h^- (h=pi,K), in a manner independent of the model assumed to describe the D^0 -> K^0_S h^+ h^- decay. Using our results, the uncertainty in gamma/phi_3 due to the error on the strong-phase difference is expected to be between 1.7 and 3.9 degrees for an analysis using B^- K^- D^0-tilde D^0-tilde -> K^0_S pi^+ pi^- decays, and between 3.2 and 3.9 degrees for an analysis based on B^- -> K^- D^0-tilde, D^0-tilde -> K^0_S K^+ K^- decays. A measurement is also presented of the CP-odd fraction, F_-, of the decay D^0 -> K^0_S K^+ K^- in the region of the phi -> K^+ K^- resonance. We find that in a region within 0.01 GeV^2/c^4 of the nominal phi mass squared F_- > 0.91 at the 90% confidence level.