ترغب بنشر مسار تعليمي؟ اضغط هنا

Selecting a single orientation for millimeter sized graphene sheets

178   0   0.0 ( 0 )
 نشر من قبل Alpha N'Diaye
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices.



قيم البحث

اقرأ أيضاً

In this work we present a simple pathway to obtain large single-crystal graphene on copper (Cu) foils with high growth rates using a commercially available cold-wall chemical vapour deposition (CVD) reactor. We show that graphene nucleation density i s drastically reduced and crystal growth is accelerated when: i) using ex-situ oxidised foils; ii) performing annealing in an inert atmosphere prior to growth; iii) enclosing the foils to lower the precursor impingement flux during growth. Growth rates as high as 14.7 and 17.5 micrometers per minute are obtained on flat and folded foils, respectively. Thus, single-crystal grains with lateral size of about one millimetre can be obtained in just one hour. The samples are characterised by optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy as well as selected area electron diffraction (SAED) and low-energy electron diffraction (LEED), which confirm the high quality and homogeneity of the films. The development of a process for the quick production of large grain graphene in a commonly used commercial CVD reactor is a significant step towards an increased accessibility to millimetre-sized graphene crystals.
A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of singl e-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 minutes, of a graphene film of 5 x 50 cm2 dimension with > 99% ultra-highly oriented grains. This growth was achieved by: (i) synthesis of sub-metre-sized single-crystal Cu(111) foil as substrate; (ii) epitaxial growth of graphene islands on the Cu(111) surface; (iii) seamless merging of such graphene islands into a graphene film with high single crystallinity and (iv) the ultrafast growth of graphene film. These achievements were realized by a temperature-driven annealing technique to produce single-crystal Cu(111) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains (if any), has a mobility up to ~ 23,000 cm2V-1s-1 at 4 K and room temperature sheet resistance of ~ 230 ohm/square. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.
292 - Y. Pan , N. Jiang , J.T. Sun 2007
We demonstrate a method for synthesizing large scale single layer graphene by thermal annealing of ruthenium single crystal containing carbon. Low energy electron diffraction indicates the graphene grows to as large as millimeter dimensions with good long-range order, and scanning tunneling microscope shows perfect crystallinity. Analysis of Moire pattern augmented with first-principles calculations shows the graphene layer is incommensurate with the underlying Ru(0001) surface forming a N by N superlattice with an average lattice strain of ~ +0.81%. Our findings offer an effective method for producing high quality single crystalline graphene for fundamental research and large-scale graphene wafer for device fabrication and integration.
We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely $R0^circ$ rotation with respect to the SiC lattice. It yields a very high-quality single-layer gr aphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a pre-oriented template to induce the unconventional orientation. Using spot profile analysis low energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently-bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.
We demonstrate how self-assembled monolayers of aromatic molecules on copper substrates can be converted into high-quality single-layer graphene using low-energy electron irradiation and subsequent annealing. We characterize this two-dimensional soli d state transformation on the atomic scale and study the physical and chemical properties of the formed graphene sheets by complementary microscopic and spectroscopic techniques and by electrical transport measurements. As substrates we successfully use Cu(111) single crystals and the technologically relevant polycrystalline copper foils.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا