ترغب بنشر مسار تعليمي؟ اضغط هنا

A Model of Polarized X-ray Emission from Twinkling Synchrotron Supernova Shells

69   0   0.0 ( 0 )
 نشر من قبل Bykov Andrei
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class - SN1006, RXJ1713.72-3946, Vela Jr, and others - that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50%. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this twinkling polarized X-ray emission of SNRs depend strongly on the magnetic-field fluctuation spectra, providing a potentially sensitive diagnostic tool. We demonstrate that the predicted characteristics can be studied with instruments that are currently being considered. These can give unique information on magnetic-field characteristics and high-energy particle acceleration in SNRs.

قيم البحث

اقرأ أيضاً

We present near-infrared polarimetric observations of the black hole X-ray binaries Swift J1357.2-0933 and A0620-00. In both sources, recent studies have demonstrated the presence of variable infrared synchrotron emission in quiescence, most likely f rom weak compact jets. For Swift J1357.2-0933 we find that the synchrotron emission is polarized at a level of 8.0 +- 2.5 per cent (a 3.2 sigma detection of intrinsic polarization). The mean magnitude and rms variability of the flux (fractional rms of 19-24 per cent in K_s-band) agree with previous observations. These properties imply a continuously launched (stable on long timescales), highly variable (on short timescales) jet in the Swift J1357.2-0933 system in quiescence, which has a moderately tangled magnetic field close to the base of the jet. We find that for A0620-00, there are likely to be three components to the optical-infrared polarization; interstellar dust along the line of sight, scattering within the system, and an additional source that changes the polarization position angle in the reddest (H and K_s) wave-bands. We interpret this as a stronger contribution of synchrotron emission, and by subtracting the line-of-sight polarization, we measure an excess of ~ 1.25 +- 0.28 per cent polarization and a position angle of the magnetic field vector that is consistent with being parallel with the axis of the resolved radio jet. These results imply that weak jets in low luminosity accreting systems have magnetic fields which possess similarly tangled fields compared to the more luminous, hard state jets in X-ray binaries.
We report the first detection of thermal X-ray line emission from the supernova remnant (SNR) RX J1713.7-3946, the prototype of the small class of synchrotron dominated SNRs. A softness-ratio map generated using XMM-Newton data shows that faint inter ior regions are softer than bright shell regions. Using Suzaku and deep XMM-Newton observations, we have extracted X-ray spectra from the softest area, finding clear line features at 1 keV and 1.35 keV. These lines can be best explained as Ne Ly-alpha and Mg He-alpha from a thermal emission component. Since the abundance ratios of metals to Fe are much higher than solar values in the thermal component, we attribute the thermal emission to reverse-shocked SN ejecta. The measured Mg/Ne, Si/Ne, and Fe/Ne ratios of 2.0-2.6, 1.5-2.0, and <0.05 solar suggest that the progenitor star of RX J1713.7-3946 was a relatively low-mass star (<~20 M_sun), consistent with a previous inference based on the effect of stellar winds of the progenitor star on the surrounding medium. Since the mean blastwave speed of ~6000 km/s (the radius of 9.6 pc divided by the age of 1600 yr) is relatively fast compared with other core-collapse SNRs, we propose that RX J1713.7-3946 is a result of a Type Ib/c supernova whose progenitor was a member of an interacting binary. While our analysis provides strong evidence for X-ray line emission, our interpretation of its nature as thermal emission from SN ejecta requires further confirmation especially through future precision spectroscopic measurements using ASTRO-H.
103 - G. Ponti , E. George , S. Scaringi 2017
We present the first fully simultaneous fits to the NIR and X-ray spectral slope (and its evolution) during a very bright flare from Sgr A*, the supermassive black hole at the Milky Ways center. Our study arises from ambitious multi-wavelength monito ring campaigns with XMM-Newton, NuSTAR and SINFONI. The average multi-wavelength spectrum is well reproduced by a broken power-law with $Gamma_{NIR}=1.7pm0.1$ and $Gamma_X=2.27pm0.12$. The difference in spectral slopes ($DeltaGamma=0.57pm0.09$) strongly supports synchrotron emission with a cooling break. The flare starts first in the NIR with a flat and bright NIR spectrum, while X-ray radiation is detected only after about $10^3$ s, when a very steep X-ray spectrum ($DeltaGamma=1.8pm0.4$) is observed. These measurements are consistent with synchrotron emission with a cooling break and they suggest that the high energy cut-off in the electron distribution ($gamma_{max}$) induces an initial cut-off in the optical-UV band that evolves slowly into the X-ray band. The temporal and spectral evolution observed in all bright X-ray flares are also in line with a slow evolution of $gamma_{max}$. We also observe hints for a variation of the cooling break that might be induced by an evolution of the magnetic field (from $Bsim30pm8$ G to $Bsim4.8pm1.7$ G at the X-ray peak). Such drop of the magnetic field at the flare peak would be expected if the acceleration mechanism is tapping energy from the magnetic field, such as in magnetic reconnection. We conclude that synchrotron emission with a cooling break is a viable process for Sgr A*s flaring emission.
SN 2005kd is among the most luminous supernovae (SNe) to be discovered at X-ray wavelengths. We have re-analysed all good angular resolution (better than $20$ FWHM PSF) archival X-ray data for SN 2005kd. The data reveal an X-ray light curve that decr eases as t$^{-1.62 pm 0.06}$. Our modelling of the data suggests that the early evolution is dominated by emission from the forward shock in a high-density medium. Emission from the radiative reverse shock is absorbed by the cold dense shell formed behind the reverse shock. Our results suggest a progenitor with a mass-loss rate towards the end of its evolution of $ge$ 4.3 $times$ 10$^{-4} M_{odot} ,{rm yr}^{-1}$, for a wind velocity of 10 km s$^{-1}$, at 4.0 $times$ 10$^{16}$ cm. This mass-loss rate is too high for most known stars, except perhaps hypergiant stars. A higher wind velocity would lead to a correspondingly higher mass-loss rate. A Luminous Blue Variable star undergoing a giant eruption could potentially fulfill this requirement, but would need a high mass-loss rate lasting for several hundred years, and need to explain the plateau observed in the optical light curve. The latter could perhaps be due to the ejecta expanding in the dense circumstellar material at relatively small radii. These observations are consistent with the fact that Type IIn SNe appear to expand into high density and high mass-loss rate environments, and also suggest rapid variability in the wind mass-loss parameters within at least the last 5000 years of stellar evolution prior to core-collapse.
We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets which are characterized by their dominant type of energy, namely internal, kinetic, or magnetic. Each model is threaded by a helic al magnetic field with a pitch angle of $45^circ$ and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of $26^circ$ are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا