ترغب بنشر مسار تعليمي؟ اضغط هنا

Emission-Line Galaxies from the HST PEARS Grism Survey I: The South Fields

133   0   0.0 ( 0 )
 نشر من قبل Amber Straughn
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of a search for emission-line galaxies in the Southern Fields of the Hubble Space Telescope PEARS (Probing Evolution And Reionization Spectroscopically) grism survey. The PEARS South Fields consist of five ACS pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. Emission-line galaxies (ELGs) are one subset of objects that are prevalent among the grism spectra. Using a 2-dimensional detection and extraction procedure, we find 320 emission lines orginating from 226 galaxy knots within 192 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. We measure emission line fluxes using standard Gaussian fitting techniques. At the resolution of the grism data, the H-beta and [OIII] doublet are blended. However, by fitting two Gaussian components to the H-beta and [OIII] features, we find that many of the PEARS ELGs have high [OIII]/H-beta ratios compared to other galaxy samples of comparable luminosities. The star-formation rates (SFRs) of the ELGs are presented, as well as a sample of distinct giant star-forming regions at z~0.1-0.5 across individual galaxies. We find that the radial distances of these HII regions in general reside near the galaxies optical continuum half-light radii, similar to those of giant HII regions in local galaxies.



قيم البحث

اقرأ أيضاً

90 - Lifang Xia 2010
We present spectroscopy of 76 emission-line galaxies (ELGs) in CDF-S taken with the LDSS3 spectrograph on Magellan Telescope. These galaxies are selected to have emission lines with ACS grism data in the Hubble Space Telescope Probing Evolution and R eionization Spectroscopically (PEARS) grism Survey. The ACS grism spectra cover the wavelength range 6000-9700 AA and most PEARS grism redshifts are based on a single emission line + photometric redshifts from broad-band colors; the Magellan spectra cover a wavelength range from 4000 {AA} to 9000 {AA}, and provide a check on redshifts derived from PEARS data. We find an accuracy of $sigma_z$ = 0.006 for the ACS grism redshifts with only one catastrophic outlier. We probe for AGN in our sample via several different methods. In total we find 7 AGNs and AGN candidates out of 76 galaxies. Two AGNs are identified from the X-ray full-band luminosity, $L_{X-ray,FB}>10^{43}$ erg$;$s$^{-1}$, the line widths and the power-law continuum spectra. Two unobscured faint AGN candidates are identified from the X-ray full-band luminosity $L_{X-ray,FB}sim10^{41}$ erg$;$s$^{-1}$, the hardness ratio and the column density, and the emission-line and X-ray derived SFRs. Two candidates are classified based on the line ratio of [NII]lambda6584/H$alpha$ versus [OIII]$lambda$5007/H$beta$ (BPT diagram), which are between the empirical and theoretical demarcation curves, i.e, the transition region from star-forming galaxies to AGNs. One AGN candidate is identified from the high-ionization emission line HeII{AA}4686.
We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1 .1<lambda<1.7 microns with a resolving power of R~130 for point sources, thus providing rest-frame optical spectra for galaxies out to z~3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H<24 and a CANDELS photometric redshift z_phot > 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 < z < 3.456 and have a median redshift of z=1.282. The catalog contains a total of 234 new redshifts for galaxies at z>1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z~2, nearly doubling the number of such pairs previously identified.
We derive direct measurement gas-phase metallicities of $7.4 < 12 + log(O/H) < 8.4$ for 14 low-mass Emission Line Galaxies (ELGs) at $0.3 < z < 0.8$ identified in the Faint Infrared Grism Survey (FIGS). We use deep slitless G102 grism spectroscopy of the Hubble Ultra Deep Field (HUDF), dispersing light from all objects in the field at wavelengths between 0.85 and 1.15 microns. We run an automatic search routine on these spectra to robustly identify 71 emission line sources, using archival data from VLT/MUSE to measure additional lines and confirm redshifts. We identify 14 objects with $0.3 < z < 0.8$ with measurable O[III]$lambda$4363 AA emission lines in matching VLT/MUSE spectra. For these galaxies, we derive direct electron-temperature gas-phase metallicities with a range of $7.4 < 12 + log(O/H) < 8.4$. With matching stellar masses in the range of $10^{7.9} M_{odot} < M_{star} < 10^{10.4} M_{odot}$, we construct a mass-metallicity (MZ) relation and find that the relation is offset to lower metallicities compared to metallicities derived from alternative methods (e.g.,$R_{23}$, O3N2, N2O2) and continuum selected samples. Using star formation rates (SFR) derived from the $Halpha$ emission line, we calculate our galaxies position on the Fundamental Metallicity Relation (FMR), where we also find an offset toward lower metallicities. This demonstrates that this emission-line-selected sample probes objects of low stellar masses but even lower metallicities than many comparable surveys. We detect a trend suggesting galaxies with higher Specific Star Formation (SSFR) are more likely to have lower metallicity. This could be due to cold accretion of metal-poor gas that drives star formation, or could be because outflows of metal-rich stellar winds and SNe ejecta are more common in galaxies with higher SSFR.
We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 $H_{140}$ imagin g, parallel ACS G800L spectroscopy, and parallel $I_{814}$ imaging. In a previous paper (Skelton et al. 2014) we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N. The data analysis is complicated by the fact that no slits are used: all objects in the WFC3 field are dispersed, and many spectra overlap. We developed software to automatically and optimally extract interlaced 2D and 1D spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has 98,663 measured redshifts and line strengths down to $JH_{IR}leq 26$ and 22,548 with $JH_{IR}leq 24$, where we comfortably detect continuum emission. Of this sample 5,459 galaxies are at $z>1.5$ and 9,621 are at $0.7<z<1.5$, where H$alpha$ falls in the G141 wavelength coverage. Based on comparisons with ground-based spectroscopic redshifts, and on analyses of paired galaxies and repeat observations, the typical redshift error for $JH_{IR}leq 24$ galaxies in our catalog is $sigma_z approx 0.003 times (1+z)$, i.e., one native WFC3 pixel. The $3sigma$ limit for emission line fluxes of point sources is $1.5times10^{-17}$ ergs s$^{-1}$ cm$^{-2}$. We show various representations of the full dataset, as well as individual examples that highlight the range of spectra that we find in the survey.
Euclid, WFIRST, and HETDEX will make emission-line selected galaxies the largest observed constituent in the $z > 1$ universe. However, we only have a limited understanding of the physical properties of galaxies selected via their Ly$alpha$ or rest-f rame optical emission lines. To begin addressing this problem, we present the basic properties of $sim 2,000$ AEGIS, COSMOS, GOODS-N, GOODS-S, and UDS galaxies identified in the redshift range $1.90 < z < 2.35$ via their [O II], H$beta$, and [O III] emission lines. For these $z sim 2$ galaxies, [O III] is generally much brighter than [O II] and H$beta$, with typical rest-frame equivalent widths of several hundred Angstroms. Moreover, these strong emission-line systems span an extremely wide range of stellar mass ($sim 3$ dex), star-formation rate ($sim 2$ dex), and [O III] luminosity ($sim 2$ dex). Comparing the distributions of these properties to those of continuum selected galaxies, we find that emission-line galaxies have systematically lower stellar masses and lower optical/UV dust attenuations. These measurements lay the groundwork for an extensive comparison between these rest-frame optical emission-line galaxies and Ly$alpha$ emitters identified in the HETDEX survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا