ﻻ يوجد ملخص باللغة العربية
Quantum fluctuations in the QED vacuum generate non-linear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of non-linearity in QED.
We compute the electric dipole moment of nucleons in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f=2$ degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the
The connection between a regularization-independent symmetric momentum substraction (RI-$tilde{rm S}$MOM) and the $overline{rm MS}$ scheme for the quark chromo EDM operators is discussed. A method for evaluating the neutron EDM from quark chromoEDM i
Until this day no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishing small, escaping detection in the last 50 years, is not easy to explain. In general it is considered as the most sensitive probe for the violation
We extract the neutron electric dipole moment $vert vec{d}_Nvert$ within the lattice QCD formalism. We analyse one ensemble of $N_f=2+1+1$ twisted mass clover-improved fermions with lattice spacing of $a simeq 0.08 {rm fm}$ and physical values of th
We propose a novel approach in a search for the neutron electric dipole moment (EDM) by taking advantage of signal amplification in a weak measurement, known as weak value amplification. Considering an analogy to the weak measurement that can measure