ﻻ يوجد ملخص باللغة العربية
Ballistic quantum wires are exposed to longitudinal profiles of perpendicular magnetic fields composed of a spike (magnetic barrier) and a homogeneous part. An asymmetric magnetoconductance peak as a function of the homogeneous magnetic field is found, comprising quantized conductance steps in the interval where the homogeneous magnetic field and the magnetic barrier have identical polarities, and a characteristic shoulder with several resonances in the interval of opposite polarities. The observations are interpreted in terms of inhomogeneous diamagnetic shifts of the quantum wire modes leading to magnetic confinement.
The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond t
We report on magnetic field dependence of half-integer quantized conductance plateaus (HQPs) in InAs quantum wires. We observed HQPs at zero applied magnetic field in InAs quantum wires fabricated from a high-quality InAs quantum well. The applicatio
We study the Zeeman splitting in induced ballistic 1D quantum wires aligned along the [233] and [011] axes of a high mobility (311)A undoped heterostructure. Our data shows that the g-factor anisotropy for magnetic fields applied along the high symme
Quasi-ballistic semiconductor quantum wires are exposed to localized perpendicular magnetic fields, also known as magnetic barriers. Pronounced, reproducible conductance fluctuations as a function of the magnetic barrier amplitude are observed. The f
The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all quantum dot states are accessible by