ترغب بنشر مسار تعليمي؟ اضغط هنا

The ion-induced charge-exchange X-ray emission of the Jovian Auroras: Magnetospheric or solar wind origin?

115   0   0.0 ( 0 )
 نشر من قبل Yawei Hui
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions (~0.7-2 MeV/u), but infer a different relative sulfur to oxygen abundance ratio for these Chandra observations.



قيم البحث

اقرأ أيضاً

Experimental and theoretical state-selective X-ray spectra resulting from single-electron capture in charge exchange (CX) collisions of Ne^10+ with He, Ne, and Ar are presented for a collision velocity of 933 km s^-1 (4.54 keV nucleon^-1), comparable to the highest velocity components of the fast solar wind. The experimental spectra were obtained by detecting scattered projectiles, target recoil ions, and X-rays in coincidence; with simultaneous determination of the recoil ion momenta. Use and interpretation of these spectra are free from the complications of non-coincident total X-ray measurements that do not differentiate between the primary reaction channels. The spectra offer the opportunity to test critically the ability of CX theories to describe such interactions at the quantum orbital angular momentum level of the final projectile ion. To this end, new classical trajectory Monte Carlo calculations are compared here with the measurements. The current work demonstrates that modeling of cometary, heliospheric, planetary, and laboratory X-ray emission based on approximate state-selective CX models may result in erroneous conclusions and deductions of relevant parameters.
94 - Liyi Gu , Jelle Kaastra , 2016
Charge exchange X-ray emission provides unique insights into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to $n$ and $l$ atomic subshells, and carrying out complete radiative cascade calculation, we create a new spectral code to evaluate the charge exchange emission in the X-ray band. Comparing to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-$n$ shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe remotely the ion properties, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.
We report an apparent detection of the C VI 4p to 1s transition line at 459 eV, during a long-term enhancement (LTE) in the Suzaku north ecliptic pole (NEP) observation of 2005 September 2. The observed intensity of the line is comparable to that of the C VI 2p to 1s line at 367 eV. This is strong evidence for the charge-exchange process. In addition to the C VI lines, emission lines from O VII, O VIII, Ne X, and Mg XI lines showed clear enhancements. There are also features in the 750 to 900 eV range that could be due to some combination of Fe XVII and XVIII L-lines, higher order transitions of O VIII (3p to 1s and 6p to 1s), and a Ne IX line. From the correlation of the X-ray intensity with solar-wind flux on time scales of about half a day, and from the short-term (~10 minutes) variations of the X-ray intensity, these lines most likely arise from solar-wind heavy ions interacting with neutral material in the Earths magnetosheath. A hard power-law component is also necessary to explain the LTE spectrum. The origin of this component is not yet known. Our results indicate that solar activity can significantly contaminate Suzaku cosmic X-ray spectra below ~1 keV. Recommendations are provided for recognizing such contamination in observations of extended sources.
Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using spherically symmetric exospheric H and O profiles. Following that, a 3D test-particle model was developed to compute the X-ray emission produced by CX collisions between neutrals and solar wind minor ions. The model results are compared to XMM-Newton observations of Mars. Results. We calculate projected X-ray emission maps for the XMM-Newton observing conditions and demonstrate how the X-ray emission reflects the Martian electromagnetic structure in accordance with the observed X-ray images. Our maps confirm that X-ray images are a powerful tool for the study of solar wind - planetary interfaces. However, the simulation results reveal several quantitative discrepancies compared to the observations. Typical solar wind and neutral coronae conditions corresponding to the 2003 observation period of Mars cannot reproduce the high luminosity or the corresponding very extended halo observed with XMM-Newton. Potential explanations of these discrepancies are discussed.
The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8pm0.2times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a compariso n of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally, that recent efforts to correlate XMM-Newton observing geometry with magnetosheath solar wind charge-exchange emission in the oxygen lines have been, quite literally, misguided. Simulations of the inner heliosphere show that broader efforts to correlate heliospheric solar wind charge-exchange with local solar wind parameters are unlikely to produce useful results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا