ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-consistent calculation of metamaterials with gain

317   0   0.0 ( 0 )
 نشر من قبل Anan Fang
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a computational scheme allowing for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure. The gain is described by a generic four-level system. A critical pumping rate exists for compensating the loss of the metamaterial. Nonlinearities arise due to gain depletion beyond a certain critical strength of a test field. Transmission, reflection, and absorption data as well as the retrieved effective parameters are presented for a lattice of resonant square cylinders embedded in layers of gain material and split ring resonators with gain material embedded into the gaps.

قيم البحث

اقرأ أيضاً

Fully self-consistent band calculation has been performed for slab phase in neutron-star inner crust, using the BCPM energy density functional. Optimized slab structure is calculated at given baryon density either with the fixed proton ratio or with the beta-equilibrium condition. Numerical results indicate the band gap of in order of keV to tens of keV, and the mobility of dripped neutrons are enhanced by the Bragg scattering, which leads to the macroscopic effective mass, $bar{m}^*_z/m_n=0.65sim 0.75$ near the bottom of the inner crust in neutron stars. We also compare the results of the band calculation with those of the Thomas-Fermi approximation. The Thomas-Fermi approximation becomes invalid at low density with high proton ratio.
With the goal of determining the $theta_{13}$ neutrino oscillation mixing angle, the measurements of reactor antineutrino fluxes at the Double Chooz, RENO and Daya Bay experimental facilities have uncovered a systematic discrepancy between the number of observed events and theoretical expectations. In the emph{ab initio} approach, the total reactor antineutrino spectrum is a weighted sum of spectra resulting from all $beta$ branches of all fission products in the reactor core. At all three facilities a systematic deviation of the number of observed events from the number of predicted events was noticed, i.e., approximately 6% of the predicted neutrinos were not observed. This discrepancy was named the reactor neutrino anomaly. In theoretical studies it is assumed that all the decays are allowed in shape, but a quarter of all transitions are actually forbidden and may have a complex energy dependence that will affect the total reactor antineutrino spectrum. In order to estimate the effect of forbidden transitions, we perform a fully self-consistent calculation of spectra from all contributing transitions and compare the results with a purely allowed approximation.
We investigate the influence of different metals on the electromagnetic response of fishnet metamaterials in the optical regime.We found, instead of using a Drude model, metals with a dielectric function from experimentally measured data should be ap plied to correctly predict the behavior of optical metamaterials. Through comparison of the performance for fishnet metamaterials made with different metals (i.e., gold, copper, and silver), we found silver is the best choice for the metallic parts compared to other metals, because silver allows for the strongest negative-permeability resonance and, hence, for optical fishnet metamaterials with a high figure-of-merit. Our study offers a valuable reference in the designs for optical metamaterials with optimized properties.
A new formalism for electromagnetic and mechanical momenta in a metamaterial is developed by means of the technique of wave-packet integrals. The medium has huge mass density and can therefore be regarded as almost stationary upon incident electromag netic waves. A clear identification of momentum density and momentum flow, including their electromagnetic and mechanical parts, is obtained by employing this formalism in a lossless dispersive metamaterial (including the cases of impedance matching and mismatching with vacuum). It is found that the ratio of the electromagnetic momentum density to the mechanical momentum density depends on the impedance and group velocity of the electromagnetic wave inside the metamaterial. One of the definite results is that both the electromagnetic momentum and the mechanical momentum in the metamaterial are in the same direction as the energy flow, instead of in the direction of the wave vector. The conservation of total momentum is verified. In addition, the law of energy conservation in the process of normal incidence is also verified by using the wave-packet integral of both the electromagnetic energy density and the electromagnetic power density, of which the latter is caused by the interaction between the induced (polarized) currents and the electromagnetic wave.
Hyperbolic metamaterials (HMMs) are highly anisotropic optical materials that behave as metals or as dielectrics depending on the direction of propagation of light. They are becoming essential for a plethora of applications, ranging from aerospace to automotive, from wireless to medical and IoT. These applications often work in harsh environments or may sustain remarkable external stresses. This calls for materials that show enhanced optical properties as well as tailorable mechanical properties. Depending on their specific use, both hard and ultrasoft materials could be required, although the combination with optical hyperbolic response is rarely addressed. Here, we demonstrate the possibility to combine optical hyperbolicity and tunable mechanical properties in the same (meta)material, focusing on the case of extreme mechanical hardness. Using high-throughput calculations from first principles and effective medium theory, we explored a large class of layered materials with hyperbolic optical activity in the near-IR and visible range, and we identified a reduced number of ultrasoft and hard HMMs among more than 1800 combinations of transition metal rocksalt crystals. Once validated by the experiments, this new class of metamaterials may foster previously unexplored optical/mechanical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا