ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulses of chaos synchronization in coupled map chains with delayed transmission

44   0   0.0 ( 0 )
 نشر من قبل Bernhard Schmitzer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulses of synchronization in chaotic coupled map lattices are discussed in the context of transmission of information. Synchronization and desynchronization propagate along the chain with different velocities which are calculated analytically from the spectrum of convective Lyapunov exponents. Since the front of synchronization travels slower than the front of desynchronization, the maximal possible chain length for which information can be transmitted by modulating the first unit of the chain is bounded.

قيم البحث

اقرأ أيضاً

We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchro nization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices and we analytically estimate the synchronization error bounds.
136 - Vieri Mastropietro 2017
We analyze the ground state localization properties of an array of identical interacting spinless fermionic chains with quasi-random disorder, using non-perturbative Renormalization Group methods. In the single or two chains case localization persist s while for a larger number of chains a different qualitative behavior is generically expected, unless the many body interaction is vanishing. This is due to number theoretical properties of the frequency, similar to the ones assumed in KAM theory, and cancellations due to Pauli principle which in the single or two chains case imply that all the effective interactions are irrelevant; in contrast for a larger number of chains relevant effective interactions are present.
The dynamics of two mutually coupled chaotic diode lasers are investigated experimentally and numerically. By adding self feedback to each laser, stable isochronal synchronization is established. This stability, which can be achieved for symmetric op eration, is essential for constructing an optical public-channel cryptographic system. The experimental results on diode lasers are well described by rate equations of coupled single mode lasers.
Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks bot h analytically and numerically. The temporal variation is rather general and formalized as being driven by a metric dynamical system. Four network models are discussed in detail in which the interconnections between vertices vary through time randomly. These models are 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4) the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation and randomness of the connection topology can enhance synchronizability in many cases; however, there are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of the time-varying graphs contains a spanning tree.
Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical resul ts are supplemented with numerical examples. The quadratic map is used for the site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate range coupling, random coupling, small world coupling and scale free coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا