ﻻ يوجد ملخص باللغة العربية
The study of the evolutionary properties of Asymptotic Giant Branch stars still presents unresolved topics. Progress in the theoretical understanding of their evolution is hampered by the difficulty to empirically explain key physical parameters like their luminosity, mass loss rate and chemical abundances. We are performing an analysis of Galactic AGB stars trying to find constraints for these parameters. Our aim is of extending this analysis to the AGB stars of the Magellanic Clouds and of the Dwarf Spheroidal Galaxies using also mid-infrared observations from the Antarctic telescope IRAIT. AGB sources from the Magellanic Clouds will be fundamental in our understanding of the AGB evolution because they are all at a well defined distance (differently from the Galactic AGBs). Moreover, these sources present different values of metallicity: this fact should permit us of examining in a better way their evolutionary properties comparing their behaviour with the one from Galactic sources.
Origin of enhanced abundance of heavy elements observed in the surface chemical composition of carbon-enhanced metal-poor (CEMP) stars still remain poorly understood. Here, we present detailed abundance analysis of seven CEMP stars based on high reso
We have carried out a search for optically visible post-Asymptotic Giant Branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contamin
(Abridged) In the recent controversy about the role of TP-AGB stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB
We present a narrow-band imaging survey of the Large Magellanic Cloud, designed to isolate the C II $lambdalambda$7231, 7236 emission lines in objects as faint as $m_{lambda7400}sim18$. The work is motivated by the recent serendipitous discovery in t
Context. Barium (Ba) stars are dwarf and giant stars enriched in elements heavier than iron produced by the slow neutron-capture process (s process). They belong to binary systems where the primary star evolved through the asymptotic giant branch (AG