ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic C and S Stars as Guidelines for Magellanic Cloud AGB Stars

166   0   0.0 ( 0 )
 نشر من قبل Roald Guandalini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the evolutionary properties of Asymptotic Giant Branch stars still presents unresolved topics. Progress in the theoretical understanding of their evolution is hampered by the difficulty to empirically explain key physical parameters like their luminosity, mass loss rate and chemical abundances. We are performing an analysis of Galactic AGB stars trying to find constraints for these parameters. Our aim is of extending this analysis to the AGB stars of the Magellanic Clouds and of the Dwarf Spheroidal Galaxies using also mid-infrared observations from the Antarctic telescope IRAIT. AGB sources from the Magellanic Clouds will be fundamental in our understanding of the AGB evolution because they are all at a well defined distance (differently from the Galactic AGBs). Moreover, these sources present different values of metallicity: this fact should permit us of examining in a better way their evolutionary properties comparing their behaviour with the one from Galactic sources.



قيم البحث

اقرأ أيضاً

Origin of enhanced abundance of heavy elements observed in the surface chemical composition of carbon-enhanced metal-poor (CEMP) stars still remain poorly understood. Here, we present detailed abundance analysis of seven CEMP stars based on high reso lution (R${sim}$ 50,000) spectra that reveal enough evidence of Asymptotic Giant Branch (AGB) stars being possible progenitors for these objects. For the objects HE0110$-$0406, HE1425$-$2052 and HE1428$-$1950, we present for the first time a detailed abundance analysis. Our sample is found to consists of one metal-poor ([Fe/H]$<$$-1.0$) and six very metal-poor ([Fe/H]$<$$-2.0$) stars with enhanced carbon and neutron-capture elements. We have critically analysed the observed abundance ratios of [O/Fe], [Sr/Ba] and [hs/ls] and examined the possibility of AGB stars being possible progenitors. The abundance of oxygen estimated in the programme stars are characteristics of AGB progenitors except for HE1429$-$0551 and HE1447$+$0102. The estimated values of [Sr/Ba] and [hs/ls] ratios also support AGB stars as possible progenitors. The locations of the programme stars in the absolute carbon abundance A(C) vs. [Fe/H] diagram along with the Group I objects hint at binary nature of the object. We have studied the chemical enrichment histories of the programme stars based on abundance ratios [Mg/C], [Sc/Mn] and [C/Cr]. Using [C/N] and $^{12}$C/$^{13}$C ratios we have examined if any internal mixing had modified their surface chemical compositions. Kinematic analysis shows that the objects HE 0110$-$0406 and HE1447$+$0102 are thick disk objects and the remaining five objects belong to the halo population of the Galaxy.
We have carried out a search for optically visible post-Asymptotic Giant Branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contamin ants with unique spectra such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-Red Giant Branch (post-RGB) stars, discovered previously in our SMC survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 Lsun), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show SED properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.
(Abridged) In the recent controversy about the role of TP-AGB stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect that in all probability is the main cause of this conundrum. As soon as stellar populations intercept the ages at which RGB stars first appear, a sudden change in the lifetime of the core He-burning phase causes a temporary boost in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of 2. The boost occurs just in the proximity of the expected peak in the TP-AGB lifetimes, and for ages of 1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. The effect brings about three main consequences. (1) Present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters, are biased towards too large values. (2) The relative TP-AGB contribution of single-burst populations falling in this critical age range cannot be accurately derived by the fuel consumption theorem. (3) A careful revision of AGB star populations in intermediate-age MC clusters is urgently demanded.
We present a narrow-band imaging survey of the Large Magellanic Cloud, designed to isolate the C II $lambdalambda$7231, 7236 emission lines in objects as faint as $m_{lambda7400}sim18$. The work is motivated by the recent serendipitous discovery in t he LMC of the first confirmed extragalactic [WC11] star, whose spectrum is dominated by C II emission, and the realization that the number of such objects is currently largely unconstrained. The survey, which imaged $sim$50$~$deg$^2$ using on-band and off-band filters, will significantly increase the total census of these rare stars. In addition, each new LMC [WC] star has a known luminosity, a quantity quite uncertain in the Galactic sample. Multiple known C II emitters were easily recovered, validating the survey design. We find 38 new C II emission candidates; spectroscopy of the complete sample will be needed to ascertain their nature. In a preliminary spectroscopic reconnaissance, we observed three candidates, finding C II emission in each. One is a new [WC11]. Another shows both the narrow C II emission lines characteristic of a [WC11], but also broad emission of C IV, O V, and He II characteristic of a much hotter [WC4] star; we speculate that this is a binary [WC]. The third object shows weak C II emission, but the spectrum is dominated by a dense thicket of strong absorption lines, including numerous O II transitions. We conclude it is likely an unusual hot, hydrogen-poor post-AGB star, possibly in transition from [WC] to white dwarf. Even lacking a complete spectroscopic program, we can infer that late [WC] stars do not dominate the central stars of LMC planetary nebulae, and that the detected C II emitters are largely of an old population.
116 - B. Cseh , M. Lugaro , V. DOrazi 2018
Context. Barium (Ba) stars are dwarf and giant stars enriched in elements heavier than iron produced by the slow neutron-capture process (s process). They belong to binary systems where the primary star evolved through the asymptotic giant branch (AG B) phase,during which it produced the s-process elements and transferred them onto the secondary, now observed as a Ba star. Aims. We compare the largest homogeneous set of Ba giant star observations of the s-process elements Y, Zr, La, Ce, and Nd with AGB nucleosynthesis models to reach a better understanding of the s process in AGB stars. Methods. By considering the light-s (ls: Y and Zr) heavy-s (hs: La, Ce, and Nd) and elements individually, we computed for the first time quantitative error bars for the different hs-element/ls-element abundance ratios, and for each of the sample stars. We compared these ratios to low-mass AGB nucleosynthesis models. We excluded La from our analysis because the strong La lines in some of the sample stars cause an overestimation and unreliable abundance determination, as compared to the other observed hs-type elements. Results. All the computed hs-type to ls-type element ratios show a clear trend of increasing with decreasing metallicity with a small spread (less than a factor of 3). This trend is predicted by low-mass AGB models where 13C is the main neutron source. The comparison with rotating AGB models indicates the need for the presence of an angular momentum transport mechanism that should not transport chemical species, but significantly reduce the rotational speed of the core in the advanced stellar evolutionary stages. This is an independent confirmation of asteroseismology observations of the slow down of core rotation in giant stars, and of rotational velocities of white dwarfs lower than predicted by models without an extra angular momentum transport mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا