ترغب بنشر مسار تعليمي؟ اضغط هنا

Too large and overlooked? Extended free-free emission towards massive star formation regions

212   0   0.0 ( 0 )
 نشر من قبل Steven Longmore N
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. N. Longmore




اسأل ChatGPT حول البحث

We present Australia Telescope Compact Array observations towards 6 massive star formation regions which, from their strong 24 GHz continuum emission but no compact 8 GHz continuum emission, appeared good candidates for hyper-compact HII regions. However, the properties of the ionised gas derived from the 19 to 93 GHz continuum emission and H70 alpha + H57 alpha radio recombination line data show the majority of these sources are, in fact, regions of spatially-extended, optically-thin free-free emission. These extended sources were missed in the previous 8 GHz observations due to a combination of spatial-filtering, poor surface brightness sensitivity and primary beam attenuation. We consider the implications that a significant number of these extended HII regions may have been missed by previous surveys of massive star formation regions. If the original sample of 21 sources is representative of the population as a whole, the fact that 6 contain previously undetected extended free-free emission suggests a large number of regions have been mis-classified. Rather than being very young objects prior to UCHII region formation, they are, in fact, associated with extended HII regions and thus significantly older. In addition, inadvertently ignoring a potentially substantial flux contribution (up to ~0.5Jy) from free-free emission has implications for dust masses derived from sub-mm flux densities. The large spatial scales probed by single-dish telescopes, which do not suffer from spatial filtering, are particularly susceptible and dust masses may be overestimated by up to a factor of ~2.

قيم البحث

اقرأ أيضاً

We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified, of which 20 are newly discovered. Many of the HII regions are multiply peaked indicating the presence of a cluster of massive stars. We find that the ionized gas tends to be associated towards the millimeter clumps; of the 31 millimeter clumps observed, 9 of these appear to be physically related to ionized gas, and a further 6 have ionized gas emission within 1. For clumps with associated ionized gas, the combined mass of the ionizing massive stars is compared to the clump masses to provide an estimate of the instantaneous star formation efficiency. These values range from a few percent to 25%, and have an average of 7 +/- 8%. We also find a correlation between the clump mass and the mass of the ionizing massive stars within it, which is consistent with a power law. This result is comparable to the prediction of star formation by competitive accretion that a power law relationship exists between the mass of the most massive star in a cluster and the total mass of the remaining stars.
We performed a survey in the SiO $J=5rightarrow4$ line toward a sample of 199 Galactic massive star-forming regions at different evolutionary stages with the SMT 10 m and CSO 10.4 m telescopes. The sample consists of 44 infrared dark clouds (IRDCs), 86 protostellar candidates, and 69 young HII regions. We detected SiO $J=5rightarrow4$ line emission in 102 sources, with a detection rate of 57%, 37%, and 65% for IRDCs, protostellar candidates, and young HII regions, respectively. We find both broad line with Full Widths at Zero Power (FWZP) $>$ 20 kms and narrow line emissons of SiO in objects at various evolutionary stages, likely associated with high-velocity shocks and low-velocity shocks, respectively. The SiO luminosities do not show apparent differences among various evolutionary stages in our sample. We find no correlation between the SiO abundance and the luminosity-to-mass ratio, indicating that the SiO abundance does not vary significantly in regions at different evolutionary stages of star formation.
The article deals with observations of star-forming regions S231-S235 in quasi-thermal lines of ammonia (NH$_3$), cyanoacetylene (HC$_3$N) and maser lines of methanol (CH$_3$OH) and water vapor (H$_2$O). S231-S235 regions is situated in the giant mol ecular cloud G174+2.5. We selected all massive molecular clumps in G174+2.5 using archive CO data. For the each clump we determined mass, size and CO column density. After that we performed observations of these clumps. We report about first detections of NH$_3$ and HC$_3$N lines toward the molecular clumps WB89 673 and WB89 668. This means that high-density gas is present there. Physical parameters of molecular gas in the clumps were estimated using the data on ammonia emission. We found that the gas temperature and the hydrogen number density are in the ranges 16-30 K and 2.8-7.2$times10^3$ cm$^{-3}$, respectively. The shock-tracing line of CH$_3$OH molecule at 36.2 GHz is newly detected toward WB89 673.
Abridged: Using free-free emission measured in the Ka-band (26-40GHz) for 10 star-forming regions in the nearby galaxy NGC6946, including its starbursting nucleus, we compare a number of SFR diagnostics that are typically considered to be unaffected by interstellar extinction: i.e., non-thermal radio (i.e., 1.4GHz), total infrared (IR; 8-1000um), and warm dust (i.e., 24um) emission, along with the hybrid (obscured + unobscured) indicators of Halpha+24um and UV+IR. The 33GHz free-free emission is assumed to provide the most accurate measure of the current SFR. Among the extranuclear star-forming regions, the 24um, Halpha+24um and UV+IR SFR calibrations are in good agreement with the 33GHz free-free SFRs. However, each of the SFR calibrations relying on some form of dust emission overestimate the nuclear SFR by a factor of ~2. This is more likely the result of excess dust heating through an accumulation of non-ionizing stars associated with an extended episode of star formation in the nucleus rather than increased competition for ionizing photons by dust. SFR calibrations using the non-thermal radio continuum yield values which only agree with the free-free SFRs for the nucleus, and underestimate the SFRs from the extranuclear star-forming regions by a factor of ~2. This result likely arises from the CR electrons decaying within the starburst region with negligible escape compared to the young extranuclear star-forming regions. Finally, we find that the SFRs estimated using the total 33GHz emission agree well with the free-free SFRs due to the large thermal fractions present at these frequencies even when local diffuse backgrounds are not removed. Thus, rest-frame 33GHz observations may act as a reliable method to measure the SFRs of galaxies at increasingly high redshift without the need of ancillary radio data to account for the non-thermal emission.
Aims: We aim to understand the fragmentation as well as the disk formation, outflow generation and chemical processes during high-mass star formation on spatial scales of individual cores. Methods: Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30m telescope, we have observed in the IRAM large program CORE the 1.37mm continuum and spectral line emission at high angular resolution (~0.4) for a sample of 20 well-known high-mass star-forming regions with distances below 5.5kpc and luminosities larger than 10^4Lsun. Results: We present the overall survey scope, the selected sample, the observational setup and the main goals of CORE. Scientifically, we concentrate on the mm continuum emission on scales on the order of 1000AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented versus singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions: The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا