ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond response in rare gas matrices doped with NO impurities: A stochastic approach

194   0   0.0 ( 0 )
 نشر من قبل Angel S. Sanz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The femtosecond response of NO-doped rare gas matrices is studied within a stochastic Langevin theoretical framework. As is shown, a simple damped harmonic oscillator model can describe properly the absorption and emission line shapes associated with the NO ($A^2Sigma^+ longleftrightarrow X^2Pi$) electronic transitions inside these media as well as the matrix first-solvation shell response in a process with two timescales, finding a fairly good agreement with available experimental data. This approach thus constitutes an alternative and complementary way to analyze the structural relaxation dynamics of systems in liquids and solids, leading to a better understanding of the underlying physics.



قيم البحث

اقرأ أيضاً

Chirped-Pulse millimetre-Wave (CPmmW) rotational spectroscopy provides a new class of information about photolysis transition state(s). Measured intensities in rotational spectra determine species-isomer-vibrational populations, provided that rotatio nal populations can be thermalized. The formation and detection of S0 vinylidene is discussed in the limits of low and high initial rotational excitation. CPmmW spectra of 193 nm photolysis of Vinyl Cyanide (Acrylonitrile) contain J=0-1 transitions in more than 20 vibrational levels of HCN, HNC, but no transitions in vinylidene or highly excited local-bender vibrational levels of acetylene. Reasons for the non-observation of the vinylidene co-product of HCN are discussed.
216 - Kasra Amini , Jens Biegert 2020
Knowledge of molecular structure is paramount in understanding, and ultimately influencing, chemical reactivity. For nearly a century, diffractive imaging has been used to identify the structures of many biologically-relevant gas-phase molecules with atomic (i.e. Angstrom, A; 1 A = 10$^{-10}$ m) spatial resolution. Unravelling the mechanisms of chemical reactions requires the capability to record multiple well-resolved snapshots of the molecular structure as it is evolving on the nuclear (i.e. femtosecond, fs; 1 fs = 10$^{-15}$ s) timescale. We present the latest, state-of-the-art ultrafast electron diffraction methods used to retrieve the molecular structure of gas-phase molecules with Angstrom and femtosecond spatio-temporal resolution. We first provide a historical and theoretical background to elastic electron scattering in its application to structural retrieval, followed by details of field-free and field-dressed ultrafast electron diffraction techniques. We discuss the application of these ultrafast methods to time-resolving chemical reactions in real-time, before providing a future outlook of the field and the challenges that exist today and in the future.
The treatment of atomic anions with Kohn-Sham density functional theory (DFT) has long been controversial since the highest occupied molecular orbital (HOMO) energy, $E_{HOMO}$, is often calculated to be positive with most approximate density functio nals. We assess the accuracy of orbital energies and electron affinities for all three rows of elements in the periodic table (H-Ar) using a variety of theoretical approaches and customized basis sets. Among all of the theoretical methods studied here, we find that a non-empirically tuned range-separated approach (constructed to satisfy DFT-Koopmans theorem for the anionic electron system) provides the best accuracy for a variety of basis sets - even for small basis sets where most functionals typically fail. Previous approaches to solve this conundrum of positive $E_{HOMO}$ values have utilized non-self-consistent methods; however electronic properties, such as electronic couplings/gradients (which require a self-consistent potential and energy), become ill-defined with these approaches. In contrast, the non-empirically tuned range-separated procedure used here yields well-defined electronic couplings/gradients and correct $E_{HOMO}$ values since both the potential and resulting electronic energy are computed self-consistently. Orbital energies and electron affinities are further analyzed in the context of the electronic energy as a function of electronic number (including fractional numbers of electrons) to provide a stringent assessment of self-interaction errors for these complex anion systems.
We report on a form of gas-phase anion action spectroscopy based on infrared multiple photon electron detachment and subsequent capture of the free electrons by a neutral electron scavenger in a Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer. This method allows one to obtain background-free spectra of strongly bound anions, for which no dissociation channels are observed. The first gas-phase spectra of acetate and propionate are presented using SF6 as electron scavenger and a free electron laser as source of intense and tunable infrared radiation. To validate the method, we compare infrared spectra obtained through multiple photon electron detachment/attachment and multiple photon dissociation for the benzoate anion. In addition, different electron acceptors are used, comparing both associative and dissociative electron capture. The relative energies of dissociation (by CO2 loss) and electron detachment are investigated for all three anions by DFT and CCSD(T) methods. DFT calculations are also employed to predict vibrational frequencies, which provide a good fit to the infrared spectra observed. The frequencies of the symmetric and antisymmetric carboxylate stretching modes for the aliphatic carboxylates are compared to those previously observed in condensed-phase IR spectra and to those reported for gas-phase benzoate, showing a strong influence of the solution environment and a slight substituent effect on the antisymmetric stretch.
Spontaneous emission from individual atoms in vapor lasts nanoseconds, if not microseconds, and beatings in this emission involve only directly excited energy sublevels. In contrast, the superfluorescent emissions burst on a much-reduced timescale an d their beatings involve both directly and indirectly excited energy sublevels. In this work, picosecond and femtosecond superfluorescent beatings are observed from a dense cesium atomic vapor. Cesium atoms are excited by 60-femtosecond long, 800 nm laser pulses via two-photon processes into their coherent superpositions of the ground 6S and excited 8S states. As a part of the transient four wave mixing process, the yoked superfluorescent blue light at lower transitions of 6S - 7P are recorded and studied. Delayed buildup time of this blue light is measured as a function of the input laser beam power using a high-resolution 2 ps streak camera. The power dependent buildup delay time is consistently doubled as the vapor temperature is lowered to cut the number of atoms by half. At low power and density, a beating with a period of 100 picoseconds representing the ground state splitting is observed. The autocorrelation measurements of the generated blue light exhibit a beating with a quasi-period of 230 fs corresponding to the splitting of the 7P level primarily at lower input laser power. Understanding and, eventually, controlling the intriguing nature of superfluorescent beatings may permit a rapid quantum operation free from the rather slow spontaneous emission processes from atoms and molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا