ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the pygmy dipole resonance in nuclei with neutron excess

253   0   0.0 ( 0 )
 نشر من قبل Antonio M. Lallena
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The electric dipole excitation of various nuclei is calculated with a Random Phase Approximation phenomenological approach. The evolution of the strength distribution in various groups of isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces $E1$ strength in the low energy region. Indexes to measure the collectivity of the excitation are defined. We studied the behavior of proton and neutron transition densities to determine the isoscalar or isovector nature of the excitation. We observed that in medium-heavy nuclei the low-energy $E1$ excitation has characteristics rather different that those exhibited by the giant dipole resonance. This new type of excitation can be identified as pygmy dipole resonance.



قيم البحث

اقرأ أيضاً

We study the nature of the low-lying dipole strength in neutron-rich nuclei, often associated to the Pygmy Dipole Resonance. The states are described within the Hartree-Fock plus RPA formalism, using different parametrizations of the Skyrme interacti on. We show how the information from combined reactions processes involving the Coulomb and different mixtures of isoscalar and isovector nuclear interactions can provide a clue to reveal the characteristic features of these states.
119 - I. Poltoratska 2012
Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excita tion. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the electromagnetic transition strength and the energy centroid of the PDR.
Starting from the quasiparticle random phase approximation based on the Skyrme interaction SLy5, we study the effects of phonon-phonon coupling~(PPC) on the low-energy electric dipole response in $^{40-58}$Ca. Using the same set of parameters we desc ribe available experimental data for $^{40,44,48}$Ca and give prediction for $^{50-58}$Ca. The inclusion of the PPC results in the formation of low-energy $1^-$ states. There is an impact of the PPC effect on low-energy $E1$~strength of $^{40,44,48}$Ca. The PPC effect on the electric dipole polarizability is discussed. We predict a strong increase of the summed $E1$~strength below 10MeV, with increasing neutron number from $^{48}$Ca till $^{58}$Ca.
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,ag) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structu re: one group of states which is excited in (a,ag) as well as in (g,g) reactions and a group of states at higher energies which is only excited in (g,g) reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance.
The vibrational structure of the Pygmy Dipole Resonance (PDR) is investigated within a quantum many-body treatment with extended separable interactions able to encode the dependence of nuclear symmetry energy on density. A new picture of PDR is unvei led in terms of a combined dynamics of the neutron skin and of the core isovector polarization, which determines the isoscalar features of PDR while reproducing the isovector properties of Giant Dipole Resonance. The key role played by the variation with density of the symmetry energy on shaping the low-lying dipole response and its isoscalar-isovector structure is underlined. Our results provide insights for the challenge of clarifying the transition from skin oscillation to a highly bulk collective dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا