ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure of Pr_{2-x}Ce_xCuO_4 studied via ARPES and LDA+DMFT+Sigma_k

244   0   0.0 ( 0 )
 نشر من قبل Igor Nekrasov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electron-doped Pr(2-x)Ce(x)CuO(4) (PCCO) compound in the pseudogap regime (x~0.15) was investigated using angle-resolved photoemission spectroscopy (ARPES) and the generalized dynamical mean-field theory (DMFT) with the k-dependent self-energy (LDA+DMFT+Sigma_k). Model parameters (hopping integral values and local Coulomb interaction strength) for the effective one-band Hubbard model were calculated by the local density approximation (LDA) with numerical renormalization group method (NRG) employed as an impurity solver in DMFT computations. An external k-dependent self-energy Sigma_k was used to describe interaction of correlated conducting electrons with short-range antiferromagnetic (AFM) pseudogap fluctuations. Both experimental and theoretical spectral functions and Fermi surfaces (FS) were obtained and compared demonstrating good semiquantitative agreement. For both experiment and theory normal state spectra of nearly optimally doped PCCO show clear evidence for a pseudogap state with AFM-like nature. Namely, folding of quasiparticle bands as well as presence of the hot spots and Fermi arcs were observed.

قيم البحث

اقرأ أيضاً

130 - Eva Pavarini 2014
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method ar e (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.
87 - X. Ren , I. Leonov , G. Keller 2006
The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local density approximation (LDA) is expressed in Wannier functions basis, with only the five anti-bonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating gap in NiO is found to be a result of the strong electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic moment computed in the paramagnetic phase (PM) agrees well with that measured in the antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in accordance with the experimental finding that AFM long-range order has no significant influence on the electronic structure of NiO.
The BaNi$_2$As$_2$ compound is investigated using both the angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and combined computational scheme of local density approximation together with dynamical mean-field theory (LD A+DMFT). For more realistic comparison of LDA+DMFT spectral functions with ARPES data we take into account several experimental features: the photoemission cross-section, the experimental energy and angular resolutions and the photo-hole lifetime effects. In contrast to isostructural iron arsenides the BaNi$_2$As$_2$ within LDA+DMFT appears to be weakly correlated (effective mass enhancement about $1.2$). This dramatic reduction of the correlation strength comes from the increase of 3d-orbital filling, when going from Fe to Ni, together with rather large bare Ni-3d LDA bandwidth. Nevertheless, even weakened electron correlations cause remarkable reconstruction of the bare BaNi$_2$As$_2$ LDA band structure and corresponding LDA+DMFT calculations provide better agreement with ARPES than just renormalized LDA results.
Recent experimental observations of magnetization plateau in metallic tetraboride $textrm{TmB}_{4}$ have created a lot of interest in these class of materials. Hysteretic longitudinal resistance and anomalous Hall Effect are other remarkable features in the rare-earth tetraborides which represent experimental realizations of Archimedean Shastry-Sutherland (SSL) lattice. Electronic band structures, calculated under GGA and GGA+SO approximations, show that $textrm{TmB}_{4}$ is a narrow band system with considerable correlation in its f-level. Strong correlation effects in this system are studied under single-site dynamical mean field theory (DMFT) [LDA+DMFT scheme] using multi-orbital generalization of iterated perturbation theory (MO-IPT). Pseudo-gap behaviour in spectral function and non-Fermi liquid behaviour of self-energy shows non-trivial strong correlation effects present in this geometrically frustrated metallic magnets. We also consider the extant, heather-to-neglected, strong atomic spin-orbit coupling (SOC) effects. While there is a significant change in the topology of the Fermi surface in the presence of SOC, the non-Fermi liquid behavior survives. The system can be modelled by an effective two orbital spinless Falicov-Kimball model together with two free band like states.
We discuss the recently proposed LDA+DMFT approach providing consistent parameter free treatment of the so called double counting problem arising within the LDA+DMFT hybrid computational method for realistic strongly correlated materials. In this app roach the local exchange-correlation portion of electron-electron interaction is excluded from self consistent LDA calculations for strongly correlated electronic shells, e.g. d-states of transition metal compounds. Then the corresponding double counting term in LDA+DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit - FLL) form of the Hubbard model interaction term. We present the results of extensive LDA+DMFT calculations of densities of states, spectral densities and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in paramagnetic phase: charge transfer insulators (MnO, CoO and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems LDA+DMFT qualitatively improves the conventional LDA+DMFT results with FLL type of double counting, where CoO and NiO were obtained to be metals. We also include in our calculations transition metal 4s-states located near the Fermi level missed in previous LDA+DMFT studies of these monooxides. General agreement with optical and X-ray experiments is obtained. For strongly correlated metals LDA$^prime$+DMFT results agree well with earlier LDA+DMFT calculations and existing experiments. However, in general LDA+DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen states positions, as compared to the conventional LDA+DMFT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا