ترغب بنشر مسار تعليمي؟ اضغط هنا

Characteristics of EUV coronal jets observed with STEREO/SECCHI

146   0   0.0 ( 0 )
 نشر من قبل Giuseppe Nistic\\'o
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterisation of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events commonly interpreted as a small-scale (about 35 arcsec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its looptops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipoles footpoints. Five events were termed micro-CME type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. A few jets are also found in equatorial coronal holes. The typical lifetimes in the SECCHI/EUVI (Extreme UltraViolet Imager) field of view between 1.0 to 1.7 solar radius and in SECCHI/COR1 field of view between 1.4 to 4 solar radius are obtained, and the derived speed are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more details in further studies.



قيم البحث

اقرأ أيضاً

We present stereoscopic reconstructions of the location and inclination of polar plumes of two data sets based on the two simultaneously recorded images taken by the EUVI telescopes in the SECCHI instrument package onboard the emph{STEREO (Solar TErr estrial RElations Observatory)} spacecraft. The ten plumes investigated show a superradial expansion in the coronal hole in 3D which is consistent with the 2D results. Their deviations from the local meridian planes are rather small with an average of $6.47^{circ}$. By comparing the reconstructed plumes with a dipole field with its axis along the solar rotation axis, it is found that plumes are inclined more horizontally than the dipole field. The lower the latitude is, the larger is the deviation from the dipole field. The relationship between plumes and bright points has been investigated and they are not always associated. For the first data set, based on the 3D height of plumes and the electron density derived from SUMER/emph{SOHO} Si {sc viii} line pair, we found that electron densities along the plumes decrease with height above the solar surface. The temperature obtained from the density scale height is 1.6 to 1.8 times larger than the temperature obtained from Mg {sc ix} line ratios. We attribute this discrepancy to a deviation of the electron and the ion temperatures. Finally, we have found that the outflow speeds studied in the O {sc vi} line in the plumes corrected by the angle between the line of sight and the plume orientation are quite small with a maximum of 10 $mathrm{km s^{-1}}$. It is unlikely that plumes are a dominant contributor to the fast solar wind.
In this paper, we carry out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic reconnection, which is evidenced by continuous magnetic cancellation at the jet base. The projected initial velocity of the jet2 is 402 km s. The accelerations in the ascending and descending phases of jet2 are not consistent, the former is considerably larger than the value of solar gravitational acceleration at the solar surface, while the latter is lower than solar gravitational acceleration. There are two possible candidates of extra forces acting on jet2 during its propagation. One is the downward gas pressure from jet1 when it falls back and meets with jet2. The other is the viscous drag from the surrounding plasma during the fast propagation of jet2. As a contrast, the accelerations of jet3 in the rising and falling phases are constant, implying that the propagation of jet3 is not significantly influenced byextra forces.
We present a comprehensive statistical analysis of 106 sheath regions driven by coronal mass ejections (CMEs) and measured near 1 AU. Using data from the STEREO probes, this extended analysis focuses on two discrete categorizations. In the first cate gorization, we investigate how the generic features of sheaths change with their potential formation mechanisms (propagation and expansion sheaths), namely, their associations with magnetic ejectas (MEs) which are primarily expanding or propagating in the solar wind. We find propagation sheaths to be denser and driven by stronger MEs, whereas expansion sheaths are faster. Exploring the temporal profiles of these sheaths with a superposed epoch technique, we observe that most of the magnetic field and plasma signatures are more elevated in propagation sheaths relative to expansion sheaths. The second categorization is based on speed variations across sheaths. Employing linear least squares regression, we categorize four distinct speed profiles of the sheath plasma. We find that the associated shock properties and solar cycle phase do not impact the occurrence of such variations. Our results also highlight that the properties of the driving MEs are a major source of variability in the sheath properties. Through logistic regression, we conclude that the magnetic field strength and the ME speed in the frame of the solar wind are likely drivers of these speed variations.
We investigate the interaction of three consecutive large-scale coronal waves with a polar coronal hole, simultaneously observed on-disk by the Solar TErrestrial Relations Observatory (STEREO)-A spacecraft and on the limb by the PRoject for On-Board Autonomy 2 (PROBA2) spacecraft on January 27, 2011. All three extreme-ultraviolet(EUV) waves originate from the same active region NOAA 11149 positioned at N30E15 in the STEREO-A field-of-view and on the limb in PROBA2. We derive for the three primary EUV waves start velocities in the range of ~310 km/s for the weakest up to ~500 km/s for the strongest event. Each large-scale wave is reflected at the border of the extended coronal hole at the southern polar region. The average velocities of the reflected waves are found to be smaller than the mean velocities of their associated direct waves. However, the kinematical study also reveals that in each case the end velocity of the primary wave matches the initial velocity of the reflected wave. In all three events the primary and reflected waves obey the Huygens-Fresnel principle, as the incident angle with ~10{deg} to the normal is of the same size as the angle of reflection. The correlation between the speed and the strength of the primary EUV waves, the homologous appearance of both the primary and the reflected waves, and in particular the EUV wave reflections themselves implicate that the observed EUV transients are indeed nonlinear large-amplitude MHD waves.
Our study attempts to understand the collision characteristics of two coronal mass ejections (CMEs) launched successively from the Sun on 2013 October 25. The estimated kinematics, from three-dimensional (3D) reconstruction techniques applied to obse rvations of CMEs by SECCHI/Coronagraphic (COR) and Heliospheric Imagers (HIs), reveal their collision around 37 $R_sun$ from the Sun. In the analysis, we take into account the propagation and expansion speeds, impact direction, angular size as well as the masses of the CMEs. These parameters are derived from imaging observations, but may suffer from large uncertainties. Therefore, by adopting head-on as well as oblique collision scenarios, we have quantified the range of uncertainties involved in the calculation of the coefficient of restitution for expanding magnetized plasmoids. Our study shows that the comparatively large expansion speed of the following CME than that of the preceding CME, results in a higher probability of super-elastic collision. We also infer that a relative approaching speed of the CMEs lower than the sum of their expansion speeds increases the chance of super-elastic collision. The analysis under a reasonable errors in observed parameters of the CME, reveals the larger probability of occurrence of an inelastic collision for the selected CMEs. We suggest that the collision nature of two CMEs should be discussed in 3D, and the calculated value of the coefficient of restitution may suffer from a large uncertainty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا