ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact Generated Shockwaves are Proposed for the Origin of Sunspots to Explain the Detected Planetary Effects on the Solar Activity

96   0   0.0 ( 0 )
 نشر من قبل Jozsef Garai
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jozsef Garai




اسأل ChatGPT حول البحث

Five new correlations between sunspot activity and orbiting position of the Jovian planets are detected. In order to explain these correlations it is suggested that the resonance of the outer planets destabilizes the orbit of Kuiper Belt Objects and generates a cyclical impact frequency on the Sun. The vaporization of the object initiates a shock way disrupting the upwelling of the plasma resulting in a sunspot formation. The proposed model is able to explain the length of the cycle, the latitude distribution of the sunspots and the extremely long term stability of the cycles. Calculating the positions of the Jovian planets at conjunction and opposition allows the long term prediction of the solar activity.



قيم البحث

اقرأ أيضاً

Solar wind measurements in the heliosphere are predominantly comprised of protons, alphas, and minor elements in a highly ionized state. The majority of low charge states, such as He$^{+}$, measured in situ are often attributed to pick up ions of non -solar origin. However, through inspection of the velocity distribution functions of near Earth measurements, we find a small but significant population of He$^+$ ions in the normal solar wind whose properties indicate that it originated from the Sun and has evolved as part of the normal solar wind. Current ionization models, largely governed by electron impact and radiative ionization and recombination processes, underestimate this population by several orders of magnitude. Therefore, to reconcile the singly ionized He observed, we investigate recombination of solar He$^{2+}$ through charge exchange with neutrals from circumsolar dust as a possible formation mechanism of solar He$^{+}$. We present an empirical profile of neutrals necessary for charge exchange to become an effective vehicle to recombine He$^{2+}$ to He$^{+}$ such that it meets observational He$^{+}$ values. We find the formation of He$^{+}$ is not only sensitive to the density of neutrals but also to the inner boundary of the neutral distribution encountered along the solar wind path. However, further observational constraints are necessary to confirm that the interaction between solar $alpha$ particles and dust neutrals is the primary source of the He$^{+}$ observations.
263 - Jozsef Garai 2007
The presence of low viscosity layers in the mantle is supported by line of geological and geophysical observations. Recent high pressure and temperature investigations indicated that partial carbonate melt should exist at the bottom of the lithospher e and at 660 km. The presence of few percent carbonate melt reduces the viscosity by several order of magnitude. The globally existing 660 km very low viscosity layer allows the development of differential rotation between the upper and lower mantle. This differential rotation between the 660 km outer shell and the rest of the earth offers a plausible explanation for plate tectonics and for the generation of the earths magnetic field. Simple dynamo model is proposed, which able to reproduce all of the features of the contemporary and, within reasonable uncertainty, the paleomagnetic field. The model is also consistent with geological and geophysical observations.
Several studies point to the antimicrobial effects of ELF electromagnetic fields. Such fields have accompanied life from the very beginning, and it is possible that they played a significant role in its emergence and evolution. However, the literatur e on the biological effects of ELF electromagnetic fields is controversial, and we still lack an understanding of the complex mechanisms that make such effects, observed in many experiments, possible. The Covid-19 pandemic has shown how fragile we are in the face of powerful processes operating in the biosphere. We believe that understanding the role of ELF electromagnetic fields in regulating the biosphere is important in our fight against Covid-19, and research in this direction should be intensified.
297 - Nicola Scafetta 2014
The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772) that successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research have further confirmed that: (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g. within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~178.38 yr; (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennia time scales. This short review concludes with an emphasis on the contribution of the authors research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that synchronizes also the Suns activity and the Earths climate.
Solar flares significantly impact the conditions of the Earths ionosphere. In particular, the sudden increase in X-ray flux during a flare penetrates down to the lowest-lying D-region and dominates ionization at these altitudes (60-100 km). Measureme nts of very low frequency (VLF: 3-30kHz) radio waves that reflect at D-region altitudes provide a unique remote-sensing probe to investigate the D-region response to solar flare emissions. Here, using a combination of VLF amplitude measurements at 24kHz together with X-ray observations from the Geostationary Operational Environment Satellite (GOES) X-ray sensor, we present a large-scale statistical study of 334 solar flare events and their impacts on the D-region over the past solar cycle. Focusing on both GOES broadband X-ray channels, we investigate how the flare peak fluxes and position on the solar disk dictate an ionospheric response and extend this to investigate the characteristic time delay between incident X-ray flux and the D-region response. We show that the VLF amplitude linearly correlates with both the 1-8 A and 0.5-4 A channels, with correlation coefficients of 0.80 and 0.79, respectively. Unlike higher altitude ionospheric regions for which the location of the flare on the solar disk affects the ionospheric response, we find that the D-region response to solar flares does not depend on the flare location. By comparing the time delays between the peak X-ray fluxes in both GOES channels and VLF amplitudes, we find that there is an important difference between the D-region response and the X-ray spectral band. We also demonstrate for several flare events that show a negative time delay, the peak VLF amplitude matches with the impulsive 25-50 keV hard X-ray fluxes measured by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا