ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortices in dipolar condensates with dominant dipolar interactions

164   0   0.0 ( 0 )
 نشر من قبل Marta Abad
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present full three-dimensional numerical calculations of single vortex states in rotating dipolar condensates. We consider a Bose-Einstein condensate of 52Cr atoms with dipole-dipole and s-wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex states by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. We investigate the properties of a single vortex and calculate the critical angular velocity for different values of the s-wave scattering length. We show that, whereas the standard variational approach breaks down in the limit of pure dipolar interactions, exact solutions of the Gross-Pitaevskii equation can be obtained for values of the s-wave scattering length down to zero. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis for different values of the angular velocity of the rotating trap.



قيم البحث

اقرأ أيضاً

Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulatio ns of a dipolar Bose-Einstein Condensate (BEC) in a pancake confinement at $T=0$ K and study the effect of quantized vorticity on the phases that can be realized depending upon the ratio between dipolar and short-range interaction. By increasing this ratio the system undergoes a spontaneous density modulation in the form of an ordered arrangement of multi-atom droplets. This modulated phase can be either a supersolid (SS) or a normal solid (NS). In the SS state droplets are immersed in a background of low-density superfluid and the system has a finite global superfluid fraction resulting in non-classical rotational inertia. In the NS state no such superfluid background is present and the global superfluid fraction vanishes. We propose here a protocol to create vortices in modulated phases of dipolar BEC by freezing into such phases a vortex-hosting superfluid (SF) state. The resulting system, depending upon the interactions strengths, can be either a SS or a NS To discriminate between these two possible outcome of a freezing experiment, we show that upon releasing of the radial harmonic confinement, the expanding vortex-hosting SS shows tell-tale quantum interference effects which display the symmetry of the vortex lattice of the originating SF, as opposed to the behavior of the NS which shows instead a ballistic radial expansion of the individual droplets. Such markedly different behavior might be used to prove the supersolid character of rotating dipolar condensates.
116 - M. Abad , M. Guilleumas , R. Mayol 2010
We study a Bose-Einstein condensate of 52Cr atoms confined in a toroidal trap with a variable strength of s-wave contact interactions. We analyze the effects of the anisotropic nature of the dipolar interaction by considering the magnetization axis t o be perpendicular to the trap symmetry axis. In the absence of a central repulsive barrier, when the trap is purely harmonic, the effect of reducing the scattering length is a tuning of the geometry of the system: from a pancake-shaped condensate when it is large, to a cigar-shaped condensate for small scattering lengths. For a condensate in a toroidal trap, the interaction in combination with the central repulsive Gaussian barrier produces an azimuthal dependence of the particle density for a fixed radial distance. We find that along the magnetization direction the density decreases as the scattering length is reduced but presents two symmetric density peaks in the perpendicular axis. For even lower values of the scattering length we observe that the system undergoes a dipolar-induced symmetry breaking phenomenon. The whole density becomes concentrated in one of the peaks, resembling an origin-displaced cigar-shaped condensate. In this context we also analyze stationary vortex states and their associated velocity field, finding that this latter also shows a strong azimuthal dependence for small scattering lengths. The expectation value of the angular momentum along the z direction provides a qualitative measure of the difference between the velocity in the different density peaks.
We investigate Bose-Einstein condensates in bubble trap potentials in the presence of a small gravity. In particular, we focus on thin shells and study both contact and dipolar interacting condensates. We first analyze the effects of the anisotropic nature of the dipolar interactions, which already appear in the absence of gravity and are enhanced when the polarization axis of the dipoles and the gravity are slightly misaligned. Then, in the small gravity context, we investigate the dynamics of small oscillations of these thin, shell-shaped condensates triggered either by an instantaneous tilting of the gravity direction or by a sudden change of the gravity strength. This system could be a preliminary stage for realizing a gravity sensor in space laboratories.
We perform a full three-dimensional study on miscible-immiscible conditions for coupled dipolar and non-dipolar Bose-Einstein condensates (BEC), confined within anisotropic traps. Without loosing general miscibility aspects that can occur for two-com ponent mixtures, our main focus was on the atomic erbium-dysprosium ($^{168}$Er-$^{164}$Dy) and dysprosium-dysprosium ($^{164}$Dy-$^{162}$Dy) mixtures. Our analysis for pure-dipolar BEC was limited to coupled systems confined in pancake-type traps, after considering a study on the stability regime of such systems. In case of non-dipolar systems with repulsive contact intneeractions we are able to extend the miscibility analysis to coupled systems with cigar-type symmetries. For a coupled condensate with repulsive inter- and intra-species two-body interactions, confined by an external harmonic trap, the transition from a miscible to an immiscible phase is verified to be much softer than in the case the system is confined by a symmetric hard-wall potential. Our results, presented by density plots, are pointing out the main role of the trap symmetry and inter-species interaction for the miscibility. A relevant parameter to measure the overlap between the two densities was defined and found appropriate to quantify the miscibility of a coupled system.
We study the family of static and moving dark solitons in quasi-one-dimensional dipolar Bose-Einstein condensates, exploring their modified form and interactions. The density dip of the soliton acts as a giant anti-dipole which adds a non-local contr ibution to the conventional local soliton-soliton interaction. We map out the stability diagram as a function of the strength and polarization direction of the atomic dipoles, identifying both roton and phonon instabilities. Away from these instabilities, the solitons collide elastically. Varying the polarization direction relative to the condensate axis enables tuning of this non-local interaction between repulsive and attractive; the latter case supports unusual dark soliton bound states. Remarkably, these bound states are themselves shown to behave like solitons, emerging unscathed from collisions with each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا