ترغب بنشر مسار تعليمي؟ اضغط هنا

New Torque Reversal and Spin-Up of 4u 1626- 67 Observed by Fermi/GBM and Swift/BAT

243   0   0.0 ( 0 )
 نشر من قبل Ascensi\\'on Camero Arranz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After about 18 years of steadily spinning down, the accretion-powered pulsar 4U 1626-67, experienced a torque reversal at the beginning of 2008. For the present study we have used all available Fermi/GBM data since its launch in 2008 June 11 and over 5 yr of hard X-ray Swift/BAT observations (starting from 2004 October up to the present time). This second detected torque reversal is centered near MJD 54500 (2008 Feb 4) and it lasts approximately 150 days. From 2004 up to the end of 2007 4U 1626-67 the spin-down rate decreased at a mean rate of ~ -5.5E-13 Hz s-1 until the source reversed torque again. Since then it has been following a steady spin-up at a mean rate of ~ 5E-13 Hz s-1. In addition, 4U 1626-67 increased its flux simultaneously (a ~2.5 factor). We present detailed long-term timing analysis of this source and a long term spectral hardness ratio study in order to see whether there are spectral changes around this new observed torque reversal.



قيم البحث

اقرأ أيضاً

Recent X-ray observations by Fermi/GBM discovered a new torque reversal of 4U 1626-67 after 18 years of steady spinning down. Using Swift/BAT observations we were able to center this new torque reversal on Feb 4 2008, lasting approximately 150 days. From 2004 up to the end of 2007, the spin-down rate averaged at a mean rate of ~dnu/dt=-4.8e-13 Hz s-1 until the torque reversal reported here. Since then it has been following a steady spin-up at a mean rate of ~dnu/dt= 4e-13 Hz s-1. The properties of this torque reversal, as well as the lack of correlation between the X-ray flux and the torque applied to the neutron star before this transition, challenges our understanding of the physical mechanisms operating in this system.
Some short GRBs are followed by longer extended emission, lasting anywhere from ~10 to ~100 s. These short GRBs with extended emission (EE) can possess observational characteristics of both short and long GRBs (as represented by GRB 060614), and the traditional classification based on the observed duration places some of them in the long GRB class. While GRBs with EE pose a challenge to the compact binary merger scenario, they may therefore provide an important link between short and long duration events. To identify the population of GRBs with EE regardless of their initial classifications, we performed a systematic search of short GRBs with EE using all available data (up to February 2013) of both Swift/BAT and Fermi/GBM. The search identified 16 BAT and 14 GBM detected GRBs with EE, several of which are common events observed with both detectors. We investigated their spectral and temporal properties for both the spikes and the EE, and examined correlations among these parameters. Here we present the results of the systematic search as well as the properties of the identified events. Finally, their properties are also compared with short GRBs with EE observed with BATSE, identified through our previous search effort. We found several strong correlations among parameters, especially when all of the samples were combined. Based on our results, a possible progenitor scenario of two-component jet is discussed.
We present an analysis of the spectral shape and pulse profile of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR during a spin-up state. The pulsar, which experienced a torque reversal to spin-up in 2008, has a spin period of 7.7 s. Comparing the phase-averaged spectra obtained with Suzaku in 2010 and with NuSTAR in 2015, we find that the spectral shape changed between the two observations: the 3-10 keV flux increased by 5% while the 30-60 keV flux decreased significantly by 35%. Phase-averaged and phase-resolved spectral analysis shows that the continuum spectrum observed by NuSTAR is well described by an empirical NPEX continuum with an added broad Gaussian emission component around the spectral peak at 20 keV. Taken together with the observed Pdot value obtained from Fermi/GBM, we conclude that the spectral change between the Suzaku and NuSTAR observations was likely caused by an increase of the accretion rate. We also report the possible detection of asymmetry in the profile of the fundamental cyclotron line. Furthermore, we present a study of the energy-resolved pulse profiles using a new relativistic ray tracing code, where we perform a simultaneous fit to the pulse profiles assuming a two-column geometry with a mixed pencil- and fan-beam emission pattern. The resulting pulse profile decompositions enable us to obtain geometrical parameters of accretion columns (inclination, azimuthal and polar angles) and a fiducial set of beam patterns. This information is important to validate the theoretical predictions from radiation transfer in a strong magnetic field.
We present an analysis of chandra/LETGS observations of the ultracompact X-ray binary (UCXB) 4U 1626$-$67, continuing our project to analyze the existing Chandra gratings data of this interesting source. The extremely low mass, hydrogen-deplete d donor star provides a unique opportunity to study the properties and structure of the metal-rich accreted plasma. There are strong, double-peaked emission features of OVII-VIII and Ne IX-X, but no other identified emission lines are detected. Our spectral fit simultaneously models the emission line profiles and the plasma parameters, using a two-temperature collisionally-ionized plasma. Based on our line profile fitting, we constrain the inclination of the system to 25--60$^{circ}$ and the inner disk radius to $sim$1500 gravitational radii, in turn constraining the donor mass to $lesssim$0.026 M_sun, while our plasma modeling confirms previous reports of high neon abundance in the source, establishing a Ne/O ratio in the system of $0.47 pm 0.04$, while simultaneously estimating a very low Fe/O ratio of $0.0042 pm 0.0008$ and limiting the Mg/O ratio to less than 1% by number. We discuss these results in light of previous work.
We report on high-resolution X-ray spectroscopy of the ultracompact X-ray binary pulsar 4U 1626-67 with Chandra/HETGS acquired in 2010, two years after the pulsar experienced a torque reversal. The well-known strong Ne and O emission lines with Keple rian profiles are shown to arise at the inner edge of the magnetically-channeled accretion disk. We exclude a photoionization model for these lines based on the absence of sharp radiative recombination continua. Instead, we show that the lines arise from a collisional plasma in the inner-disk atmosphere, with $Tsimeq 10^7$ K and $n_e sim 10^{17}$ cm^(-3). We suggest that the lines are powered by X-ray heating of the optically-thick disk inner edge at normal incidence. Comparison of the line profiles in HETGS observations from 2000, 2003, and 2010 show that the inner disk radius decreased by a factor of two after the pulsar went from spin-down to spin-up, as predicted by magnetic accretion torque theory. The inner disk is well inside the corotation radius during spin-up, and slightly beyond the corotation radius during spin-down. Based on the disk radius and accretion torque measured during steady spin-up, the pulsars X-ray luminosity is $2times 10^{36}$ erg/s, yielding a source distance of 3.5(+0.2-0.3) kpc. The mass accretion rate is an order of magnitude larger than expected from gravitational radiation reaction, possibly due to X-ray heating of the donor. The line profiles also indicate a binary inclination of 39(+20-10) degrees, consistent with a 0.02 Msun donor star. Our emission measure analysis favors a He white dwarf or a highly-evolved H-poor main sequence remnant for the donor star, rather than a C-O or O-Ne white dwarf. The measured Ne/O ratio is 0.46+-0.14 by number. In an appendix, we show how to express the emission measure of a H-depleted collisional plasma without reference to a H number density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا