ترغب بنشر مسار تعليمي؟ اضغط هنا

Spacelike matching to null infinity

190   0   0.0 ( 0 )
 نشر من قبل Anil Zenginoglu C
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with minor modifications. We demonstrate the flexibility of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.



قيم البحث

اقرأ أيضاً

We prove an inequality relating the trace of the extrinsic curvature, the total angular momentum, the centre of mass, and the Trautman-Bondi mass for a class of gravitational initial data sets with constant mean curvature extending to null infinity. As an application we obtain non-existence results for the asymptotic Dirichlet problem for CMC hypersurfaces in stationary space-times.
We investigate the behavior of null geodesics near future null infinity in asymptotically flat spacetimes. In particular, we focus on the asymptotic behavior of null geodesics that correspond to worldlines of photons initially emitted in the directio ns tangential to the constant radial surfaces in the Bondi coordinates. The analysis is performed for general dimensions, and the difference between the four-dimensional cases and the higher-dimensional cases is stressed. In four dimensions, some assumptions are required to guarantee the null geodesics to reach future null infinity, in addition to the conditions of asymptotic flatness. Without these assumptions, gravitational waves may prevent photons from reaching null infinity. In higher dimensions, by contrast, such assumptions are not necessary, and gravitational waves do not affect the asymptotic behavior of null geodesics.
278 - Junbin Li , Xi-Ping Zhu 2014
We consider a characteristic problem of the vacuum Einstein equations with part of the initial data given on a future complete null cone with suitable decay, and show that the solution exists uniformly around the null cone for general such initial da ta. We can then define a segment of the future null infinity. The initial data are not required to be small and the decaying condition inherits from the works of cite{Ch-K} and cite{K-N}.
182 - Lili He , Hans Lindblad 2021
In this work we give a complete picture of how to in a direct simple way define the mass at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss law. The first and second way involve only the limit of metric (Trautman mass) respectively the null second fundamental forms along asymptotically characteristic surfaces (asymptotic Hawking mass) that only depend on the ADM mass. The last in an original way involves construction of special characteristic coordinates at null infinity (Bondi mass). The results here rely on asymptotics of the metric derived in [24].
We describe the hyperboloidal compactification for Teukolsky equations in Kerr spacetime. We include null infinity on the numerical grid by attaching a hyperboloidal layer to a compact domain surrounding the rotating black hole and the orbit of an in spiralling point particle. This technique allows us to study, for the first time, gravitational waveforms from large- and extreme-mass-ratio inspirals in Kerr spacetime extracted at null infinity. Tests and comparisons of our results with previous calculations establish the accuracy and efficiency of the hyperboloidal layer method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا