ﻻ يوجد ملخص باللغة العربية
We introduce a new form for the bosonic channel minimal output entropy conjecture, namely that among states with equal input entropy, the thermal states are the ones that have slightest increase in entropy when sent through a infinitesimal thermalizing channel. We then detail a strategy to prove the conjecture through variational techniques. This would lead to the calculation of the classical capacity of a communication channel subject to thermal noise. Our strategy detects input thermal ensembles as possible solutions for the optimal encoding of the channel, lending support to the conjecture. However, it does not seem to be able to exclude the possibility that other input ensembles can attain the channel capacity.
We show that the minimum output entropy for all single-mode Gaussian channels is additive and is attained for Gaussian inputs. This allows the derivation of the channel capacity for a number of Gaussian channels, including that of the channel with li
We consider sequences of random quantum channels defined using the Stinespring formula with Haar-distributed random orthogonal matrices. For any fixed sequence of input states, we study the asymptotic eigenvalue distribution of the outputs through te
Optical channels, such as fibers or free-space links, are ubiquitous in todays telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. As a result, a complete
We prove that any closed connected exact Lagrangian manifold L in a connected cotangent bundle T*N is up to a finite covering space lift a homology equivalence. We prove this by constructing a fibrant parametrized family of ring spectra FL parametriz
We prove that, for closed exact embedded Lagrangian submanifolds of cotangent bundles, the homomorphism of homotopy groups induced by the stable Lagrangian Gauss map vanishes. In particular, we prove that this map is null-homotopic for all spheres. T