ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Casimir effect for TE and TM modes in a resonant cavity bisected by a plasma sheet

97   0   0.0 ( 0 )
 نشر من قبل Wade Naylor
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parametric photon creation via the dynamical Casimir effect (DCE) is evaluated numerically, in a three-dimensional rectangular resonant cavity bisected by a semiconductor diaphragm (SD), which is irradiated by a pulsed laser with frequency of GHz order. The aim of this paper is to determine some of the optimum conditions required to detect DCE photons relevant to a novel experimental detection system. We expand upon the thin plasma sheet model [Crocce et al., Phys. Rev. A 70 033811 (2004)] to estimate the number of photons for both TE and TM modes at any given SD position. Numerical calculations are performed considering up to 51 inter-mode couplings by varying the SD location, driving period and laser power without any perturbations. It is found that the number of photons created for TE modes strongly depends on SD position, where the strongest enhancement occurs at the midpoint (not near the cavity wall); while TM modes have weak dependence on SD position. Another important finding is the fact that significant photon production for TM$_{111}$ modes still takes place at the midpoint even for a low laser power of 0.01 micro J/pulse, although the number of TE$_{111}$ photons decreases almost proportionately with laser power. We also find a relatively wide tuning range for both TE and TM modes that is correlated with the frequency variation of the instantaneous mode functions caused by the interaction between the cavity photons and conduction electrons in the SD excited by a pulsed laser.



قيم البحث

اقرأ أيضاً

A boundary undergoing relativistic motion can create particles from quantum vacuum fluctuations in a phenomenon known as the dynamical Casimir effect. We examine the creation of particles, and more generally the transformation of quantum field states , due to boundary motion in curved spacetime. We provide a novel method enabling the calculation of the effect for a wide range of trajectories and spacetimes. We apply this to the experimental scenario used to detect the dynamical Casimir effect, now adopting the Schwarzschild metric, and find novel resonances in particle creation as a result of the spacetime curvature. Finally, we discuss a potential enhancement of the effect for the phonon field of a Bose-Einstein condensate.
401 - Ralf Schutzhold 2011
Motivated by recent experimental progress to manipulate the refractive index of dielectric materials by strong laser beams, we study some aspects of the quantum radiation created by such refractive index perturbations.
The dynamical Casimir effect (DCE) is the production of photons by the amplification of vacuum fluctuations. In this paper we demonstrate new resonance conditions in DCE that potentially allow the production of optical photons when the mechanical fre quency is smaller than the lowest frequency of the cavity field. We consider a cavity with one mirror fixed and the other allowed to oscillate. In order to identify the region where production of photons takes place, we do a linear stability analysis and investigate the dynamic stability of the system under small fluctuations. By using a numerical solution of the Heisenberg equations of motion, the time evolution of the number of photons produced in the unstable region is studied.
We theoretically study the dynamical Casimir effect (DCE), i.e., parametric amplification of a quantum vacuum, in an optomechanical cavity interacting with a photonic crystal, which is considered to be an ideal system to study the microscopic dissipa tion effect on the DCE. Starting from a total Hamiltonian including the photonic band system as well as the optomechanical cavity, we have derived an effective Floquet-Liouvillian by applying the Floquet method and Brillouin-Wigner-Feshbach projection method. The microscopic dissipation effect is rigorously taken into account in terms of the energy-dependent self-energy. The obtained effective Floquet-Liouvillian exhibits the two competing instabilities, i.e., parametric and resonance instabilities, which determine the stationary mode as a result of the balance between them in the dissipative DCE. Solving the complex eigenvalue problem of the Floquet-Liouvillian, we have determined the stationary mode with vanishing values of the imaginary parts of the eigenvalues. We find a new non-local multimode DCE represented by a multimode Bogoliubov transformation of the cavity mode and the photon band. We show the practical advantage for the observation of DCE in that we can largely reduce the pump frequency when the cavity system is embedded in a narrow band photonic crystal with a bandgap.
We consider the quantum Rabi model with external time modulation of the atomic frequency, which can be employed to create excitations from the vacuum state of the electromagnetic field as a consequence of the dynamical Casimir effect. Excitations can also be systematically subtracted from the atom-field system by suitably adjusting the modulation frequency, in the so-called anti-dynamical Casimir effect (ADCE). We evaluate the quantum thermodynamical work and show that a realistic out-of-equilibrium finite-time protocol harnessing ADCE allows for work extraction from the system, whose amount can be much bigger then the modulation amplitude, $| W_{mathrm{ADCE}}| gg hbar epsilon_Omega$, in contrast to the case of very slow adiabatic modulations. We provide means to control work extraction in state-of-the-art experimental scenarios, where precise frequency adjustments or complete system isolation may be difficult to attain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا