ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature and abundance profiles of hot gas in galaxy groups - II. Implications for feedback and ICM enrichment

175   0   0.0 ( 0 )
 نشر من قبل Jesper Rasmussen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jesper Rasmussen




اسأل ChatGPT حول البحث

We investigate the history of galactic feedback and chemical enrichment within a sample of 15 X-ray bright groups of galaxies, on the basis of the inferred Fe and Si distributions in the hot gas and the associated metal masses produced by core-collapse and type Ia supernovae (SN). Most of these cool-core groups show a central Fe and Si excess, which can be explained by prolonged enrichment by SN Ia and stellar winds in the central early-type galaxy alone, but with tentative evidence for additional processes contributing to core enrichment in hotter groups. Inferred metal mass-to-light ratios inside r_500 show a positive correlation with total group mass but are generally significantly lower than in clusters, due to a combination of lower global ICM abundances and gas-to-light ratios in groups. This metal deficiency is present for products from both SN Ia and SN II, and suggests that metals were either synthesized, released from galaxies, or retained within the ICM less efficiently in lower-mass systems. We explore possible causes, including variations in galaxy formation and metal release efficiency, cooling-out of metals, and gas and metal loss via AGN- or starburst-driven galactic winds from groups or their precursor filaments. Loss of enriched material from filaments coupled with post-collapse AGN feedback emerge as viable explanations, but we also find evidence for metals to have been released less efficiently from galaxies in cooler groups and for the ICM in these to appear chemically less evolved, possibly reflecting more extended star formation histories in less massive systems. Some implications for the hierarchical growth of clusters from groups are briefly discussed.



قيم البحث

اقرأ أيضاً

183 - M. Sun , N. Sehgal , G. M. Voit 2010
Recent measurements of the Sunyaev-Zeldovich (SZ) angular power spectrum from the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT) demonstrate the importance of understanding baryon physics when using the SZ power spectrum to cons train cosmology. This is challenging since roughly half of the SZ power at l=3000 is from low-mass systems with 10^13 h^-1 M_sun < M_500 < 1.5x10^14 h^-1 M_sun, which are more difficult to study than systems of higher mass. We present a study of the thermal pressure content for a sample of local galaxy groups from Sun et al. (2009). The group Y_{sph, 500} - M_500 relation agrees with the one for clusters derived by Arnaud et al. (2010). The group median pressure profile also agrees with the universal pressure profile for clusters derived by Arnaud et al. (2010). With this in mind, we briefly discuss several ways to alleviate the tension between the measured low SZ power and the predictions from SZ templates.
Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC) and non-cool-core (NCC) based on their CCTs. The total radio lum inosity of the brightest cluster galaxy (BCG) was obtained using radio catalog data and literature, which was compared to the CCT to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used it to constrain the masses of the SMBH, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen. For clusters, all SCCs have a central temperature drop, but for groups, this is not the case as some SCCs have centrally rising temperature profiles. While for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups. For clusters, there are indications of an anticorrelation trend between radio luminosity and CCT which is absent for the groups. Indications of a trend of radio luminosity with black hole mass observed in SCC clusters is absent for groups. The strong correlation observed between the BCG luminosity and the cluster X-ray luminosity/cluster mass weakens significantly for groups. We conclude that there are important differences between clusters and groups within the ICM cooling/AGN feedback paradigm.
We quantify the importance of the mechanical energy released by radio-galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-AGN located inside X-ray detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intra-group medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.
Using the data products of the Chandra Galaxy Atlas (Kim et al. 2019a), we have investigated the radial profiles of the hot gas temperature in 60 early type galaxies. Considering the characteristic temperature and radius of the peak, dip, and break ( when scaled by the gas temperature and virial radius of each galaxy), we propose a universal temperature profile of the hot halo in ETGs. In this scheme, the hot gas temperature peaks at RMAX = 35 +/- 25 kpc (or ~0.04 RVIR) and declines both inward and outward. The temperature dips (or breaks) at RMIN (or RBREAK) = 3 - 5 kpc (or ~0.006 RVIR). The mean slope between RMIN (RBREAK) and RMAX is 0.3 +/- 0.1. Allowing for selection effects and observational limits, we find that the universal temperature profile can describe the temperature profiles of 72% (possibly up to 82%) of our ETG sample. The remaining ETGs (18%) with irregular or monotonically declining profiles do not fit the universal profile and require another explanation. The temperature gradient inside RMIN (RBREAK) varies widely, indicating different degrees of additional heating at small radii. Investigating the nature of the hot core (HC with a negative gradient inside RMIN), we find that HC is most clearly visible in small galaxies. Searching for potential clues associated with stellar, AGN feedback, and gravitational heating, we find that HC may be related to recent star formation. But we see no clear evidence that AGN feedback and gravitational heating play any significant role for HC.
56 - A. Baldi 2005
We investigate the physical properties of the interstellar medium (ISM) in the merging pair of galaxies known as The Antennae (NGC 4038/39), using the deep coadded ~411 ks Chandra ACIS-S data set. The method of analysis and some of the main results f rom the spectral analysis, such as metal abundances and their variations from ~0.2 to ~20-30 times solar, are described in Paper I (Baldi et al. submitted). In the present paper we investigate in detail the physics of the hot emitting gas, deriving measures for the hot-gas mass (~10^ M_sun), cooling times (10^7-10^8 yr), and pressure (3.5x10^-11-2.8x10^-10 dyne cm^-2). At least in one of the two nuclei (NGC 4038) the hot-gas pressure is significantly higher than the CO pressure, implying that shock waves may be driven into the CO clouds. Comparison of the metal abundances with the average stellar yields predicted by theoretical models of SN explosions points to SNe of Type II as the main contributors of metals to the hot ISM. There is no evidence of any correlation between radio-optical star-formation indicators and the measured metal abundances. Although due to uncertainties in the average gas density we cannot exclude that mixing may have played an important role, the short time required to produce the observed metal masses (<=2 Myr) suggests that the correlations are unlikely to have been destroyed by efficient mixing. More likely, a significant fraction of SN II ejecta may be in a cool phase, in grains, or escaping in hot winds. In each case, any such fraction of the ejecta would remain undetectable with soft X-ray observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا