ﻻ يوجد ملخص باللغة العربية
We calculate the speed of sound $c_s$ in an ideal gas of resonances whose mass spectrum is assumed to have the Hagedorn form $rho(m) sim m^{-a}exp{bm}$, which leads to singular behavior at the critical temperature $T_c = 1/b$. With $a = 4$ the pressure and the energy density remain finite at $T_c$, while the specific heat diverges there. As a function of the temperature the corresponding speed of sound initially increases similarly to that of an ideal pion gas until near $T_c$ where the resonance effects dominate causing $c_s$ to vanish as $(T_c - T)^{1/4}$. In order to compare this result to the physical resonance gas models, we introduce an upper cut-off M in the resonance mass integration. Although the truncated form still decreases somewhat in the region around $T_c$, the actual critical behavior in these models is no longer present.
The speed of sound ($c_s$) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possib
We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate
The thermodynamical quantities and response functions are useful to describe the particle production in heavy-ion collisions as they reveal crucial information about the produced system. While the study of isothermal compressibility provides inferenc
We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and show that is possible to derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the
The existence of massive compact stars $(Mgtrsim 2.1 M_{odot})$ implies that the conformal limit of the speed of sound $c_s^2=1/3$ is violated if those stars have a crust of ordinary nuclear matter. Here we show that, if the most massive objects are